37 research outputs found

    Measurements of Isotope Effects in the Photoionization of N_2 and Implications for Titan's Atmosphere

    Get PDF
    Isotope effects in the non-dissociative photoionization of molecular nitrogen (N_2 + hν → N_2^+ + e^−) may play a role in determining the relative abundances of isotopic species containing nitrogen in interstellar clouds and planetary atmospheres but have not been previously measured. Measurements of the photoionization efficiency spectra of ^(14)N^2, ^(15)N^(14)N, and ^(15)N_2 from 15.5 to 18.9 eV (65.6–80.0 nm) using the Advanced Light Source at Lawrence Berkeley National Laboratory show large differences in peak energies and intensities, with the ratio of the energy-dependent photoionization cross sections, σ(^(14)N_2)/σ (^(15)N^(14)N), ranging from 0.4 to 3.5. Convolving the cross sections with the solar flux and integrating over the energies measured, the ratios of photoionization rate coefficients are J(^(15)N^(14)N)/J(^(14)N_2) = 1.00 ± 0.02 and J(^(15)N_2)/J(^(14)N_2) = 1.00 ± 0.02, suggesting that isotopic fractionation between N_2 and N_2^+ should be small under such conditions. In contrast, in a one-dimensional model of Titan’s atmosphere, isotopic self-shielding of ^(14)N_2 leads to values of J(^(15)N^(14)N)/J(^(14)N_2) as large as ~1.17, larger than under optically thin conditions but still much smaller than values as high as ~29 predicted for N_2 photodissociation. Since modeled photodissociation isotope effects overpredict the HC^(15)N/HC^(14)N ratio in Titan’s atmosphere, and since both N atoms and N_2^+ ions may ultimately lead to the formation of HCN, estimates of the potential of including N_2 photoionization to contribute to a more quantitative explanation of ^(15)N/^(14)N for HCN in Titan’s atmosphere are explored

    Size-segregated particle number and mass concentrations from different emission sources in urban Beijing

    Get PDF
    Although secondary particulate matter is reported to be the main contributor of PM2.5 during haze in Chinese megacities, primary particle emissions also affect particle concentrations. In order to improve estimates of the contribution of primary sources to the particle number and mass concentrations, we performed source apportionment analyses using both chemical fingerprints and particle size distributions measured at the same site in urban Beijing from April to July 2018. Both methods resolved factors related to primary emissions, including vehicular emissions and cooking emissions, which together make up 76% and 24% of total particle number and organic aerosol (OA) mass, respectively. Similar source types, including particles related to vehicular emissions (1.6 +/- 1.1 mu gm(-3); 2.4 +/- 1.8 x 10(3) cm(-3) and 5.5 +/- 2.8 x 10(3) cm(-3) for two traffic-related components), cooking emissions (2.6 +/- 1.9 mu gm(-3) and 5.5 +/- 3.3 x 10(3) cm(-3)) and secondary aerosols (51 +/- 41 mu gm(-3) and 4.2 +/- 3.0 x 10(3) cm(-3)), were resolved by both methods. Converted mass concentrations from particle size distributions components were comparable with those from chemical fingerprints. Size distribution source apportionment separated vehicular emissions into a component with a mode diameter of 20 nm ("traffic-ultrafine") and a component with a mode diameter of 100 nm ("traffic-fine"). Consistent with similar day- and nighttime diesel vehicle PM2.5 emissions estimated for the Beijing area, traffic-fine particles, hydrocarbon-like OA (HOA, traffic-related factor resulting from source apportionment using chemical fingerprints) and black carbon (BC) showed similar diurnal patterns, with higher concentrations during the night and morning than during the afternoon when the boundary layer is higher. Traffic-ultrafine particles showed the highest concentrations during the rush-hour period, suggesting a prominent role of local gasoline vehicle emissions. In the absence of new particle formation, our re-sults show that vehicular-related emissions (14% and 30% for ultrafine and fine particles, respectively) and cooking-activity-related emissions (32 %) dominate the particle number concentration, while secondary particulate matter (over 80 %) governs PM2.5 mass during the non-heating season in Beijing.Peer reviewe

    H2S biosynthesis and catabolism: new insights from molecular studies

    Get PDF
    Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissue

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Measurements of isotope effects in the photoionization of N2 and implications for Titan's atmosphere

    Get PDF
    Isotope effects in the non-dissociative photoionization of molecular nitrogen (N2 + h nu -&gt; N2+ + e-) may play a role in determining the relative abundances of isotopic species containing nitrogen in interstellar clouds and planetary atmospheres but have not been previously measured. Measurements of the photoionization efficiency spectra of 14N2, 15N14N, and 15N2 from 15.5 to 18.9 eV (65.6-80.0 nm) using the Advanced Light Source at Lawrence Berkeley National Laboratory show large differences in peak energies and intensities, with the ratio of the energy-dependent photoionization cross-sections, sigma(14N2)/sigma(15N14N), ranging from 0.4 to 3.5. Convolving the cross-sections with the solar flux and integrating over the energies measured, the ratios of photoionization rate coefficients are J(15N14N)/J(14N2)=1.00+-0.02 and J(15N2)/J(14N2)=1.00+-0.02, suggesting that isotopic fractionation between N2 and N2+ should be small under such conditions. In contrast, in a one-dimensional model of Titan's atmosphere, isotopic self-shielding of 14N2 leads to values of J(15N14N)/J(14N2) as large as ~;;1.17, larger than under optically thin conditions but still much smaller than values as high as ~;;29 predicted for N2 photodissociation. Since modeled photodissociation isotope effects overpredict the HC15N/HC14N ratio in Titan's atmosphere, and since both N atoms and N2+ ions may ultimately lead to the formation of HCN, estimates of the potential of including N2 photoionization to contribute to a more quantitative explanation of 15N/14N for HCN in Titan's atmosphere are explored

    ACMCC (Aerosol Chemical Monitor Calibration Center) : Results from the 2016 ACTRIS intercomparison exercises

    No full text
    The Aerosol Chemical Speciation Monitor (ACSM, Aerodyne Res. Inc.) has been installed in a growing number of supersites around the world for long-term monitoring of the submicron aerosol chemical composition. In Europe, most of these ACSM measurements are part of the European research infrastructure for aerosol, clouds, and trace gases (ACTRIS, http://www.actris.eu). Coordinated efforts to ensure that measurement are comparable from one site to another, and that all instruments follow recommended standard operating procedures are essential for the data quality of these networks. Within ACTRIS, selected expertise centers offer training and calibration of the instruments used in the network. The Aerosol Chemical Monitor Calibration Centre (ACMCC) is dedicated to online aerosol chemical monitors, with a first ACSM intercomparison/calibration campaign performed in 2013 (Crenn et al, 2014; Frohlich et al., 2014). In 2016, a second large ACTRIS campaign involved 15 quadrupole ACSMs and 6 of the newer ToF-ACSM devices. In this work, we present the results obtained from this 2016 intercomparison, focusing on new calibration procedures and on the influence of artefacts recently identified for aerosol mass spectrometer measurements (Pieber et al., 2016). These new procedures result in a significant improvement in the agreement between the Quad-ACSM instruments (Fig. 1). Results obtained by the 6 ToF-ACSM devices also allow for the first time extensive comparison of these instruments (Fig. 2), showing consistency between them as well as with data measured from the conventional quadrupole ACSM
    corecore