36 research outputs found

    Segregation analysis comparing liability and quantitative trait models for hypertension using the Genetic Analysis Workshop 13 simulated data

    Get PDF
    Discrete (qualitative) data segregation analysis may be performed assuming the liability model, which involves an underlying normally distributed quantitative phenotype. The appropriateness of the liability model for complex traits is unclear. The Genetic Analysis Workshop 13 simulated data provides measures on systolic blood pressure, a highly complex trait, which may be dichotomized into a discrete trait (hypertension). We perform segregation analysis under the liability model of hypertensive status as a qualitative trait and compare this with results using systolic blood pressure as a quantitative trait (without prior knowledge at that stage of the true underlying simulation model) using 1050 pedigrees ascertained from four replicates on the basis of at least one affected member. Both analyses identify models with major genes and polygenic components to explain the family aggregation of systolic blood pressure. Neither of the methods estimates the true parameters well (as the true model is considerably more complicated than those considered for the analysis), but both identified the most complicated model evaluated as the preferred model. Segregation analysis of complex diseases using relatively simple models is unlikely to provide accurate parameter estimates but is able to indicate major gene and/or polygenic components in familial aggregation of complex diseases

    A possible new syndrome with growth-hormone secreting pituitary adenoma, colonic polyposis, lipomatosis, lentigines and renal carcinoma in association with familial testicular germ cell malignancy: A case report

    Get PDF
    BACKGROUND: Germ-cell testicular cancer has not been definitively linked to any known hereditary cancer susceptibility disorder. Familial testicular cancer in the presence of other findings in affected and unaffected family members might indicate a previously-unidentified hereditary cancer syndrome. CASE PRESENTATION: The patient was diagnosed with a left testicular seminoma at age 28, and treated with left orchiectomy followed by adjuvant cobalt radiation. His family history is significant for testicular seminoma in his son, bladder cancer in his sister, and lipomatosis in his father. His evaluation as part of an etiologic study of familial testicular cancer revealed multiple colon polyps (adenomatous, hyperplastic, and hamartomatous) first found in his 50 s, multiple lipomas, multiple hyperpigmented skin lesions, left kidney cancer diagnosed at age 64, and a growth-hormone producing pituitary adenoma with associated acromegaly diagnosed at age 64. The patient underwent genetic testing for Cowden syndrome (PTEN gene), Carney complex (PRKAR1A gene), and multiple endocrine neoplasia syndrome type 1 (MEN1 gene); no deleterious mutations were identified. DISCUSSION: The constellation of benign and malignant neoplasms in the context of this patient's familial testicular cancer raised the possibility that these might be manifestations of a known hereditary susceptibility cancer syndrome; however, genetic testing for the three syndromes that were most likely to explain these findings did not show any mutation. Alternatively, this family's phenotype might represent a novel neoplasm susceptibility disorder. This possibility cannot be evaluated definitively on the basis of a single case report; additional observations and studies are necessary to investigate this hypothesis further

    A physical analysis of the Y chromosome shows no additional deletions, other than Gr/Gr, associated with testicular germ cell tumour

    Get PDF
    Testicular germ cell tumour (TGCT) is the most common malignancy in men aged 15–45 years. A small deletion on the Y chromosome known as ‘gr/gr' was shown to be associated with a two-fold increased risk of TGCT, increasing to three-fold in cases with a family history of TGCT. Additional deletions of the Y chromosome, known as AZFa, AZFb and AZFc, are described in patients with infertility; however, complete deletions of these regions have not been identified in TGCT patients. We screened the Y chromosome in a series of TGCT cases to evaluate if additional deletions of Y were implicated in TGCT susceptibility. Single copy Y chromosome STS markers with an average inter-marker spacing of 128 kb were examined in constitutional DNA of 271 index TGCT patients. Three markers showed evidence of deletions, sY1291, indicative of ‘gr/gr' (eight out of 271; 2.9%), Y-DAZ3 contained within ‘gr/gr' (21 out of 271; 7.7%) and a single deletion of the marker G66152 was identified in one TGCT case. No other markers demonstrated deletions. While several regions of the Y chromosome are known to be deleted and associated with infertility, our study provides no evidence to suggest regions of Y deletion, other than ‘gr/gr', are associated with susceptibility to TGCT in UK patients

    Rare disruptive mutations in ciliary function genes contribute to testicular cancer susceptibility

    Get PDF
    Testicular germ cell tumour (TGCT) is the most common cancer in young men. Here we sought to identify risk factors for TGCT by performing whole-exome sequencing on 328 TGCT cases from 153 families, 634 sporadic TGCT cases and 1,644 controls. We search for genes that are recurrently affected by rare variants (minor allele frequency <0.01) with potentially damaging effects and evidence of segregation in families. A total of 8.7% of TGCT families carry rare disruptive mutations in the cilia-microtubule genes (CMG) as compared with 0.5% of controls (P=2.1 × 10¯⁞). The most significantly mutated CMG is DNAAF1 with biallelic inactivation and loss of DNAAF1 expression shown in tumours from carriers. DNAAF1 mutation as a cause of TGCT is supported by a dnaaf1huÂČ⁔⁔h(+/−) zebrafish model, which has a 94% risk of TGCT. Our data implicate cilia-microtubule inactivation as a cause of TGCT and provide evidence for CMGs as cancer susceptibility genes

    Increased prevalence of testicular microlithiasis in men with familial testicular cancer and their relatives

    Get PDF
    Testicular germ cell tumours (TGCT) cluster in families, but responsible genes remain unidentified. The association between testicular microlithiasis (TM) and testicular carcinoma in situ (CIS) suggests that TM may be a TC risk factor. We report testicular ultrasound findings in men with familial TGCT (FTGCT) and their unaffected relatives. A total of 81 men (48 affected and 33 unaffected) from 31 families with â©Ÿ2 TC cases underwent testicular ultrasound. Testicular microlithiasis was defined as either ‘classic' (â©Ÿ5 microliths) or ‘limited' (<5 microliths). Statistical analyses used Fisher's exact test and permutation testing. Testicular microlithiasis was more frequent in the contralateral testicles of men with a history of TGCT (affected men) than in unaffected men (48 vs 24%, P=0.04). The association appeared stronger for classic TM (21 vs 9%) than for limited TM (27 vs 15%). Testicular microlithiases were bilateral in six out of seven (87%) unaffected men. Among affected men, TM was not associated with histology, age at diagnosis or cancer treatment. Of the 31 families, 10 accounted for a majority (61%) of the TM cases identified (P=0.11). Testicular microlithiasis was more prevalent among FTGCT family members than described previously in the general population, and was more common among FTGCT cases vs unaffected blood relatives. Testicular microlithiasis appeared to cluster in certain families. These findings suggest both a familial predisposition to TM and an association between TM and FTGCT. If proven, this could be clinically important to men in FTGCT families, and may be useful in identifying specific genes involved in FTGCT

    Factors associated with testicular self-examination among unaffected men from multiple-case testicular cancer families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lifetime testicular cancer (TC) risk in the general population is relatively low (~1 in 250), but men with a family history of TC are at 4 to 9 times greater risk than those without. Some health and professional organizations recommend consideration of testicular self-examination (TSE) for certain high-risk groups (e.g. men with a family history of TC). Yet little is known about factors associated with TSE behaviors in this at-risk group.</p> <p>Methods</p> <p>We collected information on this subject during an on-going NCI multidisciplinary, etiologically-focused, cross-sectional Familial Testicular Cancer (FTC) study. We present the first report specifically targeting TSE behaviors among first- and second-degree relatives (n = 99) of affected men from families with ≄ 2 TC cases. Demographic, medical, knowledge, health belief, and psychological factors consistent with the Health Belief Model (HBM) were evaluated as variables related to TSE behavior, using chi-square tests of association for categorical variables, and t-tests for continuous variables.</p> <p>Results</p> <p>For men in our sample, 46% (n = 46) reported performing TSE regularly and 51% (n = 50) reported not regularly performing TSE. Factors associated (p < .05) with regularly performing TSE in multivariate analysis were physician recommendation and testicular cancer worry. This is the first study to examine TSE in unaffected men from FTC families.</p> <p>Conclusion</p> <p>The findings suggest that, even in this high-risk setting, TSE practices are sub-optimal. Our data provide a basis for further exploring psychosocial issues that are specific to men with a family history of TC, and formulating intervention strategies aimed at improving adherence to TSE guidelines.</p

    Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor

    Get PDF
    The international Testicular Cancer Consortium (TECAC) combined five published genome-wide association studies of testicular germ cell tumor (TGCT; 3,558 cases and 13,970 controls) to identify new susceptibility loci. We conducted a fixed-effects meta-analysis, including, to our knowledge, the first analysis of the X chromosome. Eight new loci mapping to 2q14.2, 3q26.2, 4q35.2, 7q36.3, 10q26.13, 15q21.3, 15q22.31, and Xq28 achieved genome-wide significance (P < 5 × 10−8). Most loci harbor biologically plausible candidate genes. We refined previously reported associations at 9p24.3 and 19p12 by identifying one and three additional independent SNPs, respectively. In aggregate, the 39 independent markers identified to date explain 37% of father-to-son familial risk, 8% of which can be attributed to the 12 new signals reported here. Our findings substantially increase the number of known TGCT susceptibility alleles, move the field closer to a comprehensive understanding of the underlying genetic architecture of TGCT, and provide further clues to the etiology of TGCT

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    corecore