94 research outputs found

    LONG LIFE FOR THE EASTERN MEDITERRANEAN MESOSCALE EDDIES

    Get PDF
    Abstract The three-dimensional structure of the eastern Mediterranean mesoscale eddies was studied using a combination of a high horizontal resolution numerical model (∼5 km) outputs, in-situ and satellite data. Most of these eddies show good similarity between model results and observations. The structure, formation, development and propagation of each feature were studied separately and the results were then compared. Westward propagation in the southern Ionian Sea and eastward propagation in the southern Levantine Basin were observed with lifetime of more than two years

    Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    Get PDF
    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.Comment: 30 pages, 7 figure

    Human Gamma Oscillations during Slow Wave Sleep

    Get PDF
    Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30–50 Hz) and high (60–120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves (“IN-phase” pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave (“ANTI-phase” pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks

    Improving pulse crops as a source of protein, starch and micronutrients

    Get PDF
    Pulse crops have been known for a long time to have beneficial nutritional profiles for human diets but have been neglected in terms of cultivation, consumption and scientific research in many parts of the world. Broad dietary shifts will be required if anthropogenic climate change is to be mitigated in the future, and pulse crops should be an important component of this change by providing an environmentally sustainable source of protein, resistant starch and micronutrients. Further enhancement of the nutritional composition of pulse crops could benefit human health, helping to alleviate micronutrient deficiencies and reduce risk of chronic diseases such as type 2 diabetes. This paper reviews current knowledge regarding the nutritional content of pea (Pisum sativum L.) and faba bean (Vicia faba L.), two major UK pulse crops, and discusses the potential for their genetic improvement

    A Simple Statistical Method for the Automatic Detection of Ripples in Human Intracranial EEG

    Full text link
    High frequency oscillations (HFOs) are a promising biomarker of epileptic tissue, but detection of these electrographic events remains a challenge. Automatic detectors show encouraging results, but they typically require optimization of multiple parameters, which is a barrier to good performance and broad applicability. We therefore propose a new automatic HFO detection algorithm, focusing on simplicity and ease of implementation. It requires tuning of only an amplitude threshold, which can be determined by an iterative process or directly calculated from statistics of the rectified filtered data (i.e. mean plus standard deviation). The iterative approach uses an estimate of the amplitude probability distribution of the background activity to calculate the optimum threshold for identification of transient high amplitude events. We tested both the iterative and non-iterative approaches using a dataset of visually marked HFOs, and we compared the performance to a commonly used detector based on the root-mean-square. When the threshold was optimized for individual channels via ROC curve, all three methods were comparable. The iterative detector achieved a sensitivity of 99.6%, false positive rate (FPR) of 1.1%, and false detection rate (FDR) of 37.3%. However, in an eight-fold cross-validation test, the iterative method had better sensitivity than the other two methods (80.0% compared to 64.4 and 65.8%), with FPR and FDR of 1.3, and 49.4%, respectively. The simplicity of this algorithm, with only a single parameter, will enable consistent application of automatic detection across research centers and recording modalities, and it may therefore be a powerful tool for the assessment and localization of epileptic activity
    corecore