221 research outputs found

    The effect of azithromycin in adults with stable neutrophilic COPD: A double blind randomised, placebo controlled trial

    Full text link
    Background: Chronic Obstructive Pulmonary Disease (COPD) is a progressive airway disease characterised by neutrophilic airway inflammation or bronchitis. Neutrophilic bronchitis is associated with both bacterial colonisation and lung function decline and is common in exacerbations of COPD. Despite current available therapies to control inflammation, neutrophilic bronchitis remains common. This study tested the hypothesis that azithromycin treatment, as an add-on to standard medication, would significantly reduce airway neutrophil and neutrophils chemokine (CXCL8) levels, as well as bacterial load. We conducted a randomised, double-blind, placebo-controlled study in COPD participants with stable neutrophilic bronchitis. Methods: Eligible participants (n = 30) were randomised to azithromycin 250 mg daily or placebo for 12 weeks in addition to their standard respiratory medications. Sputum was induced at screening, randomisation and monthly for a 12 week treatment period and processed for differential cell counts, CXCL8 and neutrophil elastase assessment. Quantitative bacteriology was assessed in sputum samples at randomisation and the end of treatment visit. Severe exacerbations where symptoms increased requiring unscheduled treatment were recorded during the 12 week treatment period and for 14 weeks following treatment. A sub-group of participants underwent chest computed tomography scans (n = 15). Results: Nine participants with neutrophilic bronchitis had a potentially pathogenic bacteria isolated and the median total bacterial load of all participants was 5.22×107 cfu/mL. Azithromycin treatment resulted in a non-significant reduction in sputum neutrophil proportion, CXCL8 levels and bacterial load. The mean severe exacerbation rate was 0.33 per person per 26 weeks in the azithromycin group compared to 0.93 exacerbations per person in the placebo group (incidence rate ratio (95%CI): 0.37 (0.11,1.21), p = 0.062). For participants who underwent chest CT scans, no alterations were observed. Conclusions: In stable COPD with neutrophilic bronchitis, add-on azithromycin therapy showed a trend to reduced severe exacerbations sputum neutrophils, CXCL8 levels and bacterial load. Future studies with a larger sample size are warranted. Trial Registration: Australian New Zealand Clinical Trials Registry ACTRN12609000259246. © 2014 Simpson et al

    Linking Microscopic Spatial Patterns of Tissue Destruction in Emphysema to Macroscopic Decline in Stiffness Using a 3D Computational Model

    Get PDF
    Pulmonary emphysema is a connective tissue disease characterized by the progressive destruction of alveolar walls leading to airspace enlargement and decreased elastic recoil of the lung. However, the relationship between microscopic tissue structure and decline in stiffness of the lung is not well understood. In this study, we developed a 3D computational model of lung tissue in which a pre-strained cuboidal block of tissue was represented by a tessellation of space filling polyhedra, with each polyhedral unit-cell representing an alveolus. Destruction of alveolar walls was mimicked by eliminating faces that separate two polyhedral either randomly or in a spatially correlated manner, in which the highest force bearing walls were removed at each step. Simulations were carried out to establish a link between the geometries that emerged and the rate of decline in bulk modulus of the tissue block. The spatially correlated process set up by the force-based destruction lead to a significantly faster rate of decline in bulk modulus accompanied by highly heterogeneous structures than the random destruction pattern. Using the Karhunen-Loève transformation, an estimator of the change in bulk modulus from the first four moments of airspace cell volumes was setup. Simulations were then obtained for tissue destruction with different idealized alveolar geometry, levels of pre-strain, linear and nonlinear elasticity assumptions for alveolar walls and also mixed destruction patterns where both random and force-based destruction occurs simultaneously. In all these cases, the change in bulk modulus from cell volumes was accurately estimated. We conclude that microscopic structural changes in emphysema and the associated decline in tissue stiffness are linked by the spatial pattern of the destruction process

    Distribution of airway narrowing responses across generations and at branching points, assessed in vitro by anatomical optical coherence tomography

    Get PDF
    Background: Previous histological and imaging studies have shown the presence of variability in the degree of bronchoconstriction of airways sampled at different locations in the lung (i.e., heterogeneity). Heterogeneity can occur at different airway generations and at branching points in the bronchial tree. Whilst heterogeneity has been detected by previous experimental approaches, its spatial relationship either within or between airways is unknown.Methods: In this study, distribution of airway narrowing responses across a portion of the porcine bronchial tree was determined in vitro. The portion comprised contiguous airways spanning bronchial generations (#3-11), including the associated side branches. We used a recent optical imaging technique, anatomical optical coherence tomography, to image the bronchial tree in three dimensions. Bronchoconstriction was produced by carbachol administered to either the adventitial or luminal surface of the airway. Luminal cross sectional area was measured before and at different time points after constriction to carbachol and airway narrowing calculated from the percent decrease in luminal cross sectional area.Results: When administered to the adventitial surface, the degree of airway narrowing was progressively increased from proximal to distal generations (r = 0.80 to 0.98, P < 0.05 to 0.001). This 'serial heterogeneity' was also apparent when carbachol was administered via the lumen, though it was less pronounced. In contrast, airway narrowing was not different at side branches, and was uniform both in the parent and daughter airways.Conclusions: Our findings demonstrate that the bronchial tree expresses intrinsic serial heterogeneity, such that narrowing increases from proximal to distal airways, a relationship that is influenced by the route of drug administration but not by structural variations accompanying branching sites

    Non-emphysematous chronic obstructive pulmonary disease is associated with diabetes mellitus

    Get PDF
    Abstract Background Chronic obstructive pulmonary disease (COPD) has been classically divided into blue bloaters and pink puffers. The utility of these clinical subtypes is unclear. However, the broader distinction between airway-predominant and emphysema-predominant COPD may be clinically relevant. The objective was to define clinical features of emphysema-predominant and non-emphysematous COPD patients. Methods Current and former smokers from the Genetic Epidemiology of COPD Study (COPDGene) had chest computed tomography (CT) scans with quantitative image analysis. Emphysema-predominant COPD was defined by low attenuation area at -950 Hounsfield Units (LAA-950) ≥10%. Non-emphysematous COPD was defined by airflow obstruction with minimal to no emphysema (LAA-950 < 5%). Results Out of 4197 COPD subjects, 1687 were classified as emphysema-predominant and 1817 as non-emphysematous; 693 had LAA-950 between 5–10% and were not categorized. Subjects with emphysema-predominant COPD were older (65.6 vs 60.6 years, p < 0.0001) with more severe COPD based on airflow obstruction (FEV1 44.5 vs 68.4%, p < 0.0001), greater exercise limitation (6-minute walk distance 1138 vs 1331 ft, p < 0.0001) and reduced quality of life (St. George’s Respiratory Questionnaire score 43 vs 31, p < 0.0001). Self-reported diabetes was more frequent in non-emphysematous COPD (OR 2.13, p < 0.001), which was also confirmed using a strict definition of diabetes based on medication use. The association between diabetes and non-emphysematous COPD was replicated in the ECLIPSE study. Conclusions Non-emphysematous COPD, defined by airflow obstruction with a paucity of emphysema on chest CT scan, is associated with an increased risk of diabetes. COPD patients without emphysema may warrant closer monitoring for diabetes, hypertension, and hyperlipidemia and vice versa. Trial registration Clinicaltrials.gov identifiers: COPDGene NCT00608764 , ECLIPSE NCT00292552 .http://deepblue.lib.umich.edu/bitstream/2027.42/109496/1/12890_2014_Article_599.pd

    Quantitative Computed Tomography in COPD: Possibilities and Limitations

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease that is characterized by chronic airflow limitation. Unraveling of this heterogeneity is challenging but important, because it might enable more accurate diagnosis and treatment. Because spirometry cannot distinguish between the different contributing pathways of airflow limitation, and visual scoring is time-consuming and prone to observer variability, other techniques are sought to start this phenotyping process. Quantitative computed tomography (CT) is a promising technique, because current CT technology is able to quantify emphysema, air trapping, and large airway wall dimensions. This review focuses on CT quantification techniques of COPD disease components and their current status and role in phenotyping COPD

    Comparison of Two Quantitative Methods of Discerning Airspace Enlargement in Smoke-Exposed Mice

    Get PDF
    In this work, we compare two methods for evaluating and quantifying pulmonary airspace enlargement in a mouse model of chronic cigarette smoke exposure. Standard stereological sample preparation, sectioning, and imaging of mouse lung tissues were performed for semi-automated acquisition of mean linear intercept (Lm) data. After completion of the Lm measurements, D2, a metric of airspace enlargement, was measured in a blinded manner on the same lung images using a fully automated technique developed in-house. An analysis of variance (ANOVA) shows that although Lm was able to separate the smoke-exposed and control groups with statistical significance (p = 0.034), D2 was better able to differentiate the groups (p<0.001) and did so without any overlap between the control and smoke-exposed individual animal data. In addition, the fully automated implementation of D2 represented a time savings of at least 24x over semi-automated Lm measurements. Although D2 does not provide 3D stereological metrics of airspace dimensions as Lm does, results show that it has higher sensitivity and specificity for detecting the subtle airspace enlargement one would expect to find in mild or early stage emphysema. Therefore, D2 may serve as a more accurate screening measure for detecting early lung disease than Lm

    Association Between Interstitial Lung Abnormalities and All-Cause Mortality.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.Interstitial lung abnormalities have been associated with lower 6-minute walk distance, diffusion capacity for carbon monoxide, and total lung capacity. However, to our knowledge, an association with mortality has not been previously investigated.To investigate whether interstitial lung abnormalities are associated with increased mortality.Prospective cohort studies of 2633 participants from the FHS (Framingham Heart Study; computed tomographic [CT] scans obtained September 2008-March 2011), 5320 from the AGES-Reykjavik Study (Age Gene/Environment Susceptibility; recruited January 2002-February 2006), 2068 from the COPDGene Study (Chronic Obstructive Pulmonary Disease; recruited November 2007-April 2010), and 1670 from ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints; between December 2005-December 2006).Interstitial lung abnormality status as determined by chest CT evaluation.All-cause mortality over an approximate 3- to 9-year median follow-up time. Cause-of-death information was also examined in the AGES-Reykjavik cohort.Interstitial lung abnormalities were present in 177 (7%) of the 2633 participants from FHS, 378 (7%) of 5320 from AGES-Reykjavik, 156 (8%) of 2068 from COPDGene, and in 157 (9%) of 1670 from ECLIPSE. Over median follow-up times of approximately 3 to 9 years, there were more deaths (and a greater absolute rate of mortality) among participants with interstitial lung abnormalities when compared with those who did not have interstitial lung abnormalities in the following cohorts: 7% vs 1% in FHS (6% difference [95% CI, 2% to 10%]), 56% vs 33% in AGES-Reykjavik (23% difference [95% CI, 18% to 28%]), and 11% vs 5% in ECLIPSE (6% difference [95% CI, 1% to 11%]). After adjustment for covariates, interstitial lung abnormalities were associated with a higher risk of death in the FHS (hazard ratio [HR], 2.7 [95% CI, 1.1 to 6.5]; P = .03), AGES-Reykjavik (HR, 1.3 [95% CI, 1.2 to 1.4]; P < .001), COPDGene (HR, 1.8 [95% CI, 1.1 to 2.8]; P = .01), and ECLIPSE (HR, 1.4 [95% CI, 1.1 to 2.0]; P = .02) cohorts. In the AGES-Reykjavik cohort, the higher rate of mortality could be explained by a higher rate of death due to respiratory disease, specifically pulmonary fibrosis.In 4 separate research cohorts, interstitial lung abnormalities were associated with a greater risk of all-cause mortality. The clinical implications of this association require further investigation.National Institutes of Health (NIH) T32 HL007633 Icelandic Research Fund 141513-051 Landspitali Scientific Fund A-2015-030 National Cancer Institute grant 1K23CA157631 NIH K08 HL097029 R01 HL113264 R21 HL119902 K25 HL104085 R01 HL116931 R01 HL116473 K01 HL118714 R01 HL089897 R01 HL089856 N01-AG-1-2100 HHSN27120120022C P01 HL105339 P01 HL114501 R01 HL107246 R01 HL122464 R01 HL111024 National Heart, Lung, and Blood Institute's Framingham Heart Study contract N01-HC-2519.5 GlaxoSmithKline NCT00292552 5C0104960 National Institute on Aging (NIA) grant 27120120022C NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association) Althingi (the Icelandic Parliament) NIA 27120120022

    Testing the thrifty gene hypothesis: the Gly482Ser variant in PPARGC1A is associated with BMI in Tongans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thrifty gene hypothesis posits that, in populations that experienced periods of feast and famine, natural selection favoured individuals carrying thrifty alleles that promote the storage of fat and energy. Polynesians likely experienced long periods of cold stress and starvation during their settlement of the Pacific and today have high rates of obesity and type 2 diabetes (T2DM), possibly due to past positive selection for thrifty alleles. Alternatively, T2DM risk alleles may simply have drifted to high frequency in Polynesians. To identify thrifty alleles in Polynesians, we previously examined evidence of positive selection on T2DM-associated SNPs and identified a T2DM risk allele at unusually high frequency in Polynesians. We suggested that the risk allele of the Gly482Ser variant in the <it>PPARGC1A </it>gene was driven to high frequency in Polynesians by positive selection and therefore possibly represented a thrifty allele in the Pacific.</p> <p>Methods</p> <p>Here we examine whether <it>PPARGC1A </it>is a thrifty gene in Pacific populations by testing for an association between Gly482Ser genotypes and BMI in two Pacific populations (Maori and Tongans) and by evaluating the frequency of the risk allele of the Gly482Ser variant in a sample of worldwide populations.</p> <p>Results</p> <p>We find that the Gly482Ser variant is associated with BMI in Tongans but not in Maori. In a sample of 58 populations worldwide, we also show that the 482Ser risk allele reaches its highest frequency in the Pacific.</p> <p>Conclusion</p> <p>The association between Gly482Ser genotypes and BMI in Tongans together with the worldwide frequency distribution of the Gly482Ser risk allele suggests that <it>PPARGC1A </it>remains a candidate thrifty gene in Pacific populations.</p

    Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci associated with P < 5 × 10−8; 47 of these were previously described in association with either COPD or population-based measures of lung function. Of the remaining 35 new loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified functional enrichment of COPD risk loci in lung tissue, smooth muscle, and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups based on associations with quantitative imaging features and comorbidities. Our analyses provide further support for the genetic susceptibility and heterogeneity of COPD

    A Genome-wide Association Study of Emphysema and Airway Quantitative Imaging Phenotypes

    Get PDF
    Rationale: Chronic obstructive pulmonary disease (COPD) is defined by the presence of airflow limitation on spirometry, yet subjects with COPD can have marked differences in computed tomography imaging. These differences may be driven by genetic factors. We hypothesized that a genome-wide association study (GWAS) of quantitative imaging would identify loci not previously identified in analyses of COPD or spirometry. In addition, we sought to determine whether previously described genome-wide significant COPD and spirometric loci were associated with emphysema or airway phenotypes. Objectives: To identify genetic determinants of quantitative imaging phenotypes. Methods: We performed a GWAS on two quantitative emphysema and two quantitative airway imaging phenotypes in the COPDGene (non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), NETT (National Emphysema Treatment Trial), and GenKOLS (Genetics of COPD, Norway) studies and on percentage gas trapping in COPDGene. We also examined specific loci reported as genome-wide significant for spirometric phenotypes related to airflow limitation or COPD. Measurements and Main Results: The total sample size across all cohorts was 12,031, of whom 9,338 were from COPDGene. We identified five loci associated with emphysema-related phenotypes, one with airway-related phenotypes, and two with gas trapping. These loci included previously reported associations, including the HHIP, 15q25, and AGER loci, as well as novel associations near SERPINA10 and DLC1. All previously reported COPD and a significant number of spirometric GWAS loci were at least nominally (P < 0.05) associated with either emphysema or airway phenotypes. Conclusions: Genome-wide analysis may identify novel risk factors for quantitative imaging characteristics in COPD and also identify imaging features associated with previously identified lung function loci
    corecore