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At a Glance Commentary 

Scientific Knowledge on the Subject 

Chronic obstructive pulmonary disease is a complex and heterogeneous disease.  Quantitative 

image analysis of chest CT scans can characterize this heterogeneity.  Recent studies have 

identified genetic variants that increase susceptibility to emphysema or airway wall thickening, 

but have not examined both measurements in large populations of subjects with disease. 

What This Study Adds to the Field 

Our study confirms previously described associations and additionally identifies new genome-

wide significant associations with emphysema near SERPINA10 and DLC1.  We also show that 

many loci previously identified in population-based studies of lung function are associated with 

emphysema or airway phenotypes.  Genome-wide analysis of quantitative imaging may identify 

novel risk factors for COPD phenotypes, and also identify imaging features associated with 

previously identified genetic loci. 
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Abstract 1 

Rationale: Chronic obstructive pulmonary disease (COPD) is defined by the presence of airflow 2 

limitation on spirometry, yet COPD subjects can have marked differences in CT imaging.   3 

These differences may be driven by genetic factors.  We hypothesized that a genome-wide 4 

association study of quantitative imaging would identify loci not previously identified in 5 

analyses of COPD or spirometry.  In addition, we sought to determine whether previously 6 

described genome-wide significant COPD and spirometric loci were associated with emphysema 7 

or airway phenotypes. 8 

Objective: To identify genetic determinants of quantitative imaging phenotypes. 9 

Methods: We performed a genome-wide association study on two quantitative emphysema and 10 

two quantitative airway imaging phenotypes in the COPDGene (non-Hispanic white and 11 

African-American), ECLIPSE, NETT, and GenKOLS studies; and on % gas trapping in 12 

COPDGene.  We also examined specific loci reported as genome-wide significant for 13 

spirometric phenotypes related to airflow limitation or COPD.  14 

Results: The total sample size across all cohorts was 12,031, of which 9,338 were from 15 

COPDGene.  We identified five loci associated with emphysema-related phenotypes, one with 16 

airway-related phenotypes, and two with gas trapping. These loci included previously reported 17 

associations, including the HHIP, 15q25, and AGER loci, as well as novel associations near 18 

SERPINA10 and DLC1.  All previously reported COPD and a significant number of spirometric 19 

GWAS loci were at least nominally (P < 0.05) associated with either emphysema or airway 20 

phenotypes. 21 
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Conclusions: Genome-wide analysis may identify novel risk factors for quantitative imaging 22 

characteristics in COPD, and also identify imaging features associated with previously identified 23 

lung function loci.  24 
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Introduction 25 

 Chronic obstructive pulmonary disease (COPD) is a highly prevalent and morbid disease, 26 

defined by a simple measurement - the presence of irreversible airflow limitation on spirometry.  27 

Despite this simple clinical definition, COPD is a complex and heterogeneous disease with 28 

marked differences in the presence of key components that contribute to airflow obstruction in 29 

COPD – emphysema and airways disease (1).  With the advent of standardized quantitative 30 

measurements, chest CT scans have become the prevalent method of characterizing lung 31 

parenchyma and airways in COPD(2).   32 

Over the past several years, advances in image generation and analysis have led to studies 33 

demonstrating clinical and pathophysiologic relevance of these imaging measures.  These 34 

include associations with spirometry(3, 4), respiratory symptoms(5), susceptibility to 35 

osteoporosis(6) and lung cancer(7), exacerbations(8), and lung function decline(9, 10). 36 

The development of COPD is strongly influenced by genetic factors(11).  Genetic 37 

variation is also an important determinant of emphysema and airway disease.  Emphysema or 38 

airway imaging characteristics appear to be separately heritable(12, 13).  Obstruction on 39 

pulmonary function can be seen in diseases predominantly involving the airway (in cystic 40 

fibrosis), or in those that involve the parenchyma through emphysema (alpha-1 antitrypsin 41 

deficiency and cutis laxa)(14).  Previous genome-wide studies have identified variants associated 42 

with emphysema(15–17) or airway disease(18), though generally in smaller sample sizes or 43 

predominantly population-based subjects. 44 

We hypothesized quantitative imaging reflects component disease processes leading to 45 

airflow obstruction in COPD, and could have genetic determinants not discovered by analyses 46 
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using lung function alone.  To address this hypothesis, we performed a genome-wide association 47 

study of quantitative emphysema and airway phenotypes in current and former cigarette smokers 48 

with and without COPD.  We additionally hypothesized genetic loci associated with spirometry 49 

related to airflow obstruction in general population samples or with COPD affection status would 50 

demonstrate an association with imaging phenotypes.  Some of these results have been 51 

previously presented as an abstract(19).  52 

Methods  53 

Imaging measurements were available in COPDGene (NCT00608764. www.copd.org) 54 

non-Hispanic white and African-Americans, the Evaluation of COPD Longitudinally to Identify 55 

Predictive Surrogate Endpoints (ECLIPSE, SCO104960, NCT00292552, www.eclipse-56 

copd.com), National Emphysema Treatment Trial (NETT), and GenKOLS (Genetics of COPD, 57 

Norway) study.  Detailed descriptions including genotyping quality control, genotyping 58 

imputation, and quantitative imaging, have been previously published(5, 8, 20–27).  All cohorts 59 

included only current or former smokers.  COPDGene is a multicenter study including subjects 60 

of self-described non-Hispanic white or African-American ancestry and included subjects with 61 

and without COPD and with a range of spirometry.  Subjects in the remaining studies were 62 

white.  Controls had normal spirometry.  Cases in the ECLIPSE and GenKOLS studies were at 63 

least GOLD spirometry grade 2 in severity.  NETT cases had severe COPD (FEV1 < 45% 64 

predicted) and were selected for the presence of emphysema.   65 

Quantitative image analysis was performed on segmented CT chest images, using the 66 

number of voxels below -950 Hounsfield Units (%LAA-950) to estimate emphysema, and, 67 

alternatively, the Hounsfield Units at the 15
th

 percentile of the density histogram (Perc15).  The 68 
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airway wall area (Pi10) was the value for a hypothetical 10mm airway obtained by plotting a 69 

regression line of the square root of the airway wall area versus the airway internal perimeter(2).  70 

The wall area percent (WAP) was the percentage of the wall area compared to the total bronchial 71 

area for segmental and smaller airways (see Supplement).  Percent gas trapping was measured at 72 

end-tidal exhalation and defined as the percent of lung voxels with < -856 HU(28). 73 

We genotyped all subjects on Illumina platforms and imputed genotypes using MaCH 74 

and minimac(29) with 1000 Genomes Phase I v3 reference panels.  We performed linear 75 

regression on each phenotype using residuals adjusted for age, sex, pack-years of smoking, 76 

current smoking status, and ancestry-based principal components.  Imaging variables with 77 

marked non-normality were log-transformed (%LAA-950 and % gas trapping).  COPDGene and 78 

ECLIPSE were additionally adjusted for CT scanner type.  As airway measurements are not 79 

scaled to body size, we additionally adjusted for height.  For gas trapping, a covariate for study 80 

center was also added to account for site-related technical variations in expiratory CT scans.   81 

Results from all studies were combined into a meta-analysis.  Given substantial 82 

heterogeneity within our studies, our primary analysis used a modified random-effects 83 

model(30).  We also examined results using the standard fixed-effects model(31).  As we 84 

hypothesized that emphysema and airway disease measured by quantitative CT may be causal 85 

for reduced lung function and COPD, our primary analyses included all subjects, with an 86 

additional analysis in cases only (including GOLD spirometry grade 1 for COPDGene subjects).  87 

To explore and control for the effect of ascertainment, we applied a method for analysis of 88 

secondary phenotype data within case-control association studies(32).    89 

Additional methods are available in the Supplement. 90 
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Results 91 

Genome-wide association of five quantitative imaging phenotypes 92 

Baseline characteristics of subjects in each cohort are shown in Table 1.  The total 93 

sample size across all cohorts was 12,031.  Genome-wide significant results from the modified 94 

random-effects meta-analysis are shown in Table 2.  Loci with prior evidence of association 95 

with COPD, lung function, and / or emphysema – HHIP, CHRNA3/5/IREB2, and AGER – were 96 

the most significant associations with %LAA-950.  We also identified additional associations at 97 

genome-wide significance (P < 5x10
-8

) near DLC1 and SERPINA10.  An association near 98 

CHRNA4 was just below genome-wide significance (rs183345681, P = 1.8x10
-7

).  An analysis of 99 

Perc15 also identified the DLC1 and HHIP loci associations.   100 

In our analysis of airway phenotypes, no association reached genome-wide significance 101 

for Pi10.  One result for wall area percent yielded P < 5x10
-8

 (rs142200419); however, this 102 

association was markedly attenuated in the fixed effects meta-analysis, due to effects in the 103 

opposite directions in one of the cohorts (Table S1).  For the association analysis of gas trapping 104 

in COPDGene, the AGER and LINC00310/KCNE2 loci achieved significance.  No genome-wide 105 

significant results were identified in any of the case-only analyses (Table S2). For the regions 106 

yielding genome-wide significance in all subjects, we additionally examined results from an 107 

analysis accounting for ascertainment in COPDGene and GenKOLS, and including cases only 108 

from ECLIPSE (due to the small number of controls in this cohort).  P-values obtained using this 109 

method(32) (Table S1) were generally only slightly less significant, with the possible exception 110 

of HHIP and CHRNA3, suggesting that overall our results were not simply driven by an 111 

association with case-control status.  Results in cases and controls separately and, for loci not 112 
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previously described as genome-wide significant in COPD, a case-control analysis, are shown in 113 

Tables S3 and S4.   114 

The association with %LAA-950 near SERPINA10 is also near SERPINA1, variants in 115 

which are the cause of alpha-1 antitrypsin deficiency.  The most common form of severe alpha-1 116 

antitrypsin deficiency is due to homozygosity for the Z allele, rs28929474.  This variant was 117 

imputed with relatively high quality (Rsq > 0.9 in all white cohorts; 0.66 in COPDGene African-118 

Americans).  We examined the imputed rs28929474 in all cohorts, and did not find any ZZ 119 

subjects in NETT and GenKOLS; in COPDGene, seven non-Hispanic white ZZ subjects had 120 

been genotyped and subsequently excluded from analyses after SERPINA1 genotyping 121 

(Foreman, In Preparation).  All seven of these subjects were correctly identified with imputed 122 

genotypes.  Linkage disequilibrium exists between our top associated SNP at this locus, 123 

rs45505795, and rs28929474 (D’ 0.7, r
2
 = 0.295).  To determine if the association with 124 

rs45505795 could be accounted for by rs28929474, we performed a meta-analysis conditioned 125 

on rs28929474.  The resulting P-value was 0.007, demonstrating that rs28929474 accounts for 126 

some, but not all, of the association signal.  While known or identified ZZ homozygotes were 127 

excluded from COPDGene, NETT, and GenKOLS, ECLIPSE excluded only known alpha-1 128 

deficient subjects.  We identified six putative ZZ subjects in ECLIPSE.  To determine whether 129 

the association signal in ECLIPSE was driven by the presence of these six subjects, we repeated 130 

the association analysis after dropping these subjects and found the P-value was slightly 131 

attenuated but remained significant (P = 0.0018), consistent overall with an increased risk of 132 

emphysema among MZ carriers. 133 

To further explore the potential functional consequences of individual loci described in 134 

this study, we searched for evidence of functional impact using existing data sources.  Of the loci 135 
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described in this study not previously associated with COPD, one was a cis-eQTL in lung – 136 

rs55706246 near LINC00310 was in modest LD (r
2
 = 0.24) with rs2834438, an eQTL for KCNE2 137 

(p = 3.1x10
-7

)(33).  Using GWAS3D, the top-scoring variant at the DLC1 locus was rs58863591, 138 

which had active enhancer marks (H3K4me1 and DNase hypersensitivity) and potential long-139 

range interactions upstream of DLC1 and near SENP2(34). 140 

We also sought to determine whether the group of top (most significant) markers for each 141 

analysis (P < 1x10
-6

) could yield to insights about cell types based on regulatory data 142 

ENCODE(35).  In the emphysema analysis, cell type enhancer enrichment from analysis of 143 

%LAA-950 among all subjects included enhancers in umbilical vein endothelial cells (Huvec, P 144 

= 6.0x10
-4

) and DNase I hypersensitivity sites in several types of endothelial cells (P = 6.6x10
-3

 145 

to 0.03 for pulmonary artery endothelial cells (HPAEC) and adult blood, adult lymphatic, and 146 

neonatal lymphatic microvascular endothelial cells (HMVEC)).  We found similar findings for 147 

the Perc15 analysis, with the strongest DNase enrichment for pulmonary artery endothelial cells 148 

(P=0.017).  For the airway phenotypes, we found modest evidence for enrichment for enhancers 149 

K562 (leukemia) and HSMM (skeletal muscle) cell lines (P = 0.02) and DNase enrichment in 150 

CD14+ monocytes (P = 0.04).    151 

We also sought to determine whether our results were consistent with a set of genes more 152 

likely to act within a specific gene sets or pathways.  Top-ranked results identified several 153 

individual potential pathways of interest, including the toll-like receptor and phosphoinositide 3-154 

kinase pathways (iGSEA4GWAS(36)) and telomere maintenance (INRICH(37)) for the %LAA-155 

950 analyses.  Gene sets that appeared to overlap between top-ranked sets among different 156 

methods included regulation of apoptosis, isoprenoid biosynthetic process, nicotinic 157 
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acetylcholine channel activity, actin cytoskeleton, and B-cell receptor signaling for emphysema 158 

GWAS; and for airway, WNT signaling and muscle contraction. 159 

Associations at loci previously identified in association with COPD or COPD-related 160 

spirometric phenotypes 161 

Genome-wide association studies have identified multiple variants associated with 162 

COPD(23–26, 38) or measures of lung function(39–41).  We sought to determine whether there 163 

was evidence these variants might have an effect on quantitative imaging phenotypes, even if 164 

they did not reach genome-wide significance.  After excluding loci previously associated in these 165 

cohorts with COPD, we found a strong enrichment in nominally significant (P-value < 0.05) loci 166 

among the two emphysema and two imaging phenotypes (P = 4.9x10
-9

), suggesting many of 167 

these variants may also affect quantitative imaging measurements.  We further classified these 168 

variants into those showing a stronger association (by one-sided P-value) with emphysema- or 169 

airway-related phenotypes, assigning directionality such that the risk allele for COPD or reduced 170 

lung function demonstrated greater emphysema or increased airway wall thickness (Table 3).  171 

Enrichment for nominally significant P-values appeared to be greater among markers associated 172 

with quantitative emphysema (P = 1.9x10
-6

) versus those associated with airway wall thickness 173 

(P=1.3x10
-3

). 174 

We next examined regulatory patterns using Haploreg(35) in variants classified as either 175 

emphysema or airway-associated identified in Tables 2 & 3.  ‘Emphysema’ variants were 176 

modestly enriched for enhancers seen in hepatocellular carcinoma (HepG2, P=0.05), while those 177 

more strongly associated with airway phenotypes were enriched for enhancers from lung 178 

fibroblasts (NHLF) and epidermal keratinocytes (NHEK, P=0.03 to 0.04).  Both analyses were 179 

Page 12 of 49
 AJRCCM Articles in Press. Published on 01-June-2015 as 10.1164/rccm.201501-0148OC 

 Copyright © 2015 by the American Thoracic Society 



10 

 

enriched for mammary epithelial cells (HMEC, P=2.5x10
-4

 to 1.6x10
-3

) and umbilical vein 180 

endothelial cells (Huvec, P=0.02 to 0.03). The most significant DNase enrichment for 181 

emphysema-associated variants was lung-derived lymphatic microvascular endothelial cells 182 

(HMVEC-LLy; P 8x10
-4

), while top results for airway-associated variants were embryonic lung 183 

fibroblasts (WI-38), mammary fibroblasts (HMF), and small airway epithelial cells (SAEC; P 184 

3.6-6.6x10
-4

).  Emphysema-associated DNase results were not significant in the airway results, 185 

and vice versa. 186 

Discussion 187 

 In a genome-wide association study of quantitative imaging phenotypes in smokers with 188 

and without COPD, we identified genome-wide significant associations with loci previously 189 

shown to be associated with COPD or with spirometric measures related to airflow limitation, 190 

including the 15q25, HHIP, and AGER loci, the latter also identified in in association with 191 

emphysema in a general population sample(15) and with emphysema and sRAGE levels in 192 

COPD(42).  We also describe a genome-wide association with emphysema and variants near 193 

SERPINA10, and show that this association is in strong linkage disequilibrium with the Z-allele 194 

of SERPINA1, and not due the presence of PI ZZ individuals.  This report is thus consistent with 195 

other reports showing an increased risk of airflow limitation for subjects with PI MZ(43, 44) and 196 

emphasizes the role of alpha-1 antitrypsin in the pathogenesis of COPD and emphysema in a 197 

broader group of patients. 198 

 One of our top associations with emphysema (both for %LAA-950 and Perc15) was a 199 

novel locus, located in the gene DLC1 (deleted in liver cancer 1).  DLC1 frequently undergoes 200 

loss of heterozygosity or epigenetic silencing in solid cancers, including lung cancers(45).  DLC1 201 
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appears to inhibit cell growth and increases apopotosis(46), and act as a tumor suppressor 202 

through the RhoGAP-dependent and RhoGAP-independent activity(47).  DLC1 is highly 203 

expressed in the lung(48, 49).  In a study of regional emphysema, DLC1 expression showed a 204 

trend towards decreased expression with an increase in the mean linear intercept(50) (nominal P-205 

value, 0.04).   Recently, a locus in DLC1 was described in association with smoking behavior in 206 

African-Americans(51).  We found a trend towards association with current smoking at this 207 

locus in COPDGene African-Americans (P = 0.06-0.07).  However, we found no association 208 

with pack-years of smoking (P > 0.49).  In addition, DLC1 SNPs in this study are approximately 209 

200kb away and not in linkage disequilibrium with our reported DLC1 loci (r2 < 0.004 in 210 

COPDGene African-Americans), and we found no consistent evidence of effect on either pack-211 

years or current smoking at either locus in other cohorts.  We also note an additional association 212 

near CHRNA4 just below genome-wide significance.  Previous studies have identified 213 

associations with smoking behavior in this region(52, 53), though previously described variants 214 

do not appear to be in strong LD with our identified variant.  Additional studies will be needed to 215 

confirm our associations and determine their relationship to cigarette smoking.   216 

 We also examined variants previously identified at genome-wide significance in 217 

association with COPD or spirometic measures related to airflow obstruction.  Most of these loci 218 

were at least nominally significantly (P < 0.05) associated with one or more quantitative CT 219 

phenotypes.  Many appeared to have stronger associations with either quantitative emphysema or 220 

airway phenotypes.  These findings suggest that genetic determinants of lung function in the 221 

general population may influence emphysema or airway disease, and are consistent with the 222 

hypothesis that there may be variants affecting airflow obstruction in different ways detectable 223 

by quantitative imaging. 224 
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In addition to examining individual loci, our study also explores the relevance of groups 225 

of markers that may not reach genome-wide significance.  An analysis of gene sets provides 226 

supportive evidence for biological mechanisms previously been implicated in COPD, including 227 

telomere maintenance(54–57), phosphoinositide-3-kinase(58, 59),  actin organization, and B-cell 228 

receptor signaling(50).  An exploratory analysis of regulatory regions from ENCODE identified 229 

enrichment for endothelial cells.  In animal models, targeted disruption of endothelial cells 230 

through genetic or immune mechanisms leading to apoptosis can lead to emphysema(60–62).  231 

Endothelial cell apoptosis has been seen in emphysematous human tissue(60) and endothelial 232 

microparticles, a marker for apoptosis, were related to emphysema in the MESA study(63).  In 233 

contrast to prior work(16), we did not see an enrichment for fibroblasts from our quantitative 234 

emphysema analyses, but did see such enrichment in our airway-related lung function analysis. 235 

Emphysema and airway disease are important components of COPD.  We used 236 

automated and standardized measurements, available on a large number of subjects and free of 237 

inter-reader variation.   We performed an analysis including all subjects in an effort to maximize 238 

power, and applied a method to account for ascertainment based on case-control status.  239 

However, due to the high correlation of disease status with imaging characteristics, we cannot 240 

rule out a degree of confounding for some of our associations.  Although we performed five 241 

association analyses, we reported unadjusted P-values as our phenotypes are correlated, and 242 

some of our findings are seen in multiple phenotypes.  Quantitative imaging can be affected by 243 

factors not related to intrinsic lung pathology, such as degree of inflation, obesity, smoking, and 244 

characteristics of individual CT scanners(5, 64, 65).  Our decision to adjust for specific 245 

covariates was based on a desire to maximize findings of genetic analysis by controlling for the 246 

influence of age, smoking, and effects of individual scanners, yet allowing for genetic effects 247 
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that may affect disease processes contributing to more than one characteristic (e.g., low BMI and 248 

emphysema(66)).  Ultimately, our findings will require replication, ideally in additional large 249 

cohorts that include a range of severity of COPD. 250 

Our analysis also included studies with different imaging protocols, proportions of 251 

severity of disease, and racial groups.   Thus, despite our large sample size, these factors may 252 

have resulted in a reduction in statistical power.  We attempted to at least partially address this 253 

issue by using a method(30) that can improve power in the setting of heterogeneity.  While most 254 

of the P-values from this method were very similar to those using standard fixed-effects models, 255 

this method resulted in AGER reaching genome-wide significance, consistent with prior studies.  256 

Our study is unable to address several causes of potential heterogeneity.  Genetic factors may be 257 

specific to racial / ethnic groups(15).  Technical factors may be less likely to influence reads by 258 

radiologists or semi-supervised methods and may explain why we were unable to replicate 259 

previous findings based on these approaches(16, 17).  These factors, as well as differing 260 

proportions of severity of disease, may also indicate why we were unable to replicate findings 261 

from a recently reported analysis of airway wall thickness(18). Chest CT scans contain a wealth 262 

of data, and current measures of overall lung density or airway wall measurements do not 263 

adequately represent all relevant features.  Efforts to expand and standardize radiologist 264 

interpretation and novel computational and machine learning-based methods may improve the 265 

ability to detect genetic effects. 266 

Our work also demonstrates that previously described genetic associations with lung 267 

function in the population appear to influence airway or emphysema phenotypes.  Using data 268 

from the ENCODE project, we identified non-overlapping enrichment of regulatory regions for 269 

our two sets of analyses. Our results are consistent with the hypothesis that emphysema and 270 
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airway imaging characteristics may be driven by different pathogenic processes and genetic 271 

factors(12).  However, lung function, disease status, and imaging features are all correlated, and 272 

the relationship between specific imaging features is potentially complex(67).  Our relative 273 

preponderance of associations with quantitative emphysema compared to airway, for example, 274 

may reflect the stronger correlation between lung function and our quantitative emphysema 275 

measurements or technical factors that affect airway measurements(67, 68).  Our sets, 276 

particularly for ‘airway’ were loosely defined, and included results not reaching a nominal level 277 

of significance.  Additional analytic methods, such as causal modeling, may help clarify the 278 

relationships between genetic variants, lung function, and CT imaging.  Ultimately, however, the 279 

specific effects of individual variants will need to be determined by careful functional studies. 280 

Differences in susceptibility to and phenotypic heterogeneity in COPD remain poorly 281 

understood. Despite their limitations, genome-wide association studies are currently the most 282 

powerful method to identify novel genetic risk factors for this complex and heterogeneous 283 

disease.  Our analysis reflects a coordinated effort across multiple studies and to our knowledge 284 

is the largest genome-wide analysis of quantitative pulmonary imaging reported to date, and the 285 

first to include a substantial number of subjects with COPD.  Our work identifies several genetic 286 

loci that may influence specific imaging phenotypes and identifies potential functional pathways 287 

and cell types through which these loci may exert their phenotypic effects.  It also describes CT 288 

imaging phenotype-specific associations for loci previously implicated in GWAS for COPD or 289 

spirometric phenotypes related to COPD.   Additional insights will result from increasing power; 290 

thus we anticipate a critical role for combining existing and upcoming studies using improved 291 

imaging phenotypes, to help unravel the complexity of pulmonary pathology in COPD. 292 

  293 
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Tables 

Table 1: Baseline characteristics of subjects with quantitative imaging phenotypes.  Cases = GOLD Grade 2 or more severe (e.g. 

NETT) cases; Controls = GOLD 0 smoking controls; Non-cases: includes GOLD 0, 1, and PRISm subjects.  

 

COPDGene non-Hispanic 

Whites  

COPDGene African 

Americans  
ECLIPSE 

 
NETT 

GenKOLS 

(Norway)  

 Non-cases Cases Non-cases Cases Controls Cases Cases Controls Cases 

n 3062 3243 2132 901 145 1393 332 406 417 

Age 59.7 (8.6) 64.4 (8.3) 53 (6) 58.6 (8.1) 57.3 (9.4) 63.4 (7) 67.4 (5.9) 55.6 (9.4) 64.2 (9.3) 

Pack-years 39.7 (21.5) 
54.4 

(27.5) 
36.6 (20.5) 42 (23.1) 

31.8 

(26.6) 
49.8 (26.7) 

65.8 

(30.8) 
19.8 (14.1) 31 (18.2) 

Sex (%Male) 1462 (47.7%) 
1832 

(56.5%) 
1209 (56.7%) 

497 

(55.2%) 

85 

(58.6%) 

911 

(65.4%) 

212 

(63.9%) 
216 (53.2%) 

263 

(63.1%) 

Current smokers 1263 (41.2%) 
1199 

(37%) 
1838 (86.2%) 595 (66%) 58 (40%) 

480 

(34.5%) 
0 164 (40.4%) 

210 

(50.4%) 

FEV1, % predicted 91.3 (14.8) 57.4 (23) 92.2 (16.5) 59.5 (22) 
108.6 

(13.4) 
47.4 (15.5) 28.2 (7.3) 94.9 (9.2) 

52.5 

(16.9) 

%LAA-950 1.2 (0-26.9) 
7.5 (0-

61.9) 
0.7 (0-35.8) 4.6 (0-61.2) 

2.3 (0.1-

14.2) 

16.3 (0.1-

58.7) 

15 (0.3-

49.9) 
0.5 (0-34.4) 7 (0-53.2) 

Perc15, HU -909.9 (22.8) 
-938.1 

(26.8) 
-893.4 (28.1) -926.5 (32) 

-906.2 

(25.9) 

-950.9 

(25.9) 

-949.7 

(17.8) 
-891.6 (26.3) 

-932.8 

(30.2) 

Pi10, mm 3.64 (0.11) 
3.69 

(0.14) 
3.69 (0.13) 3.73 (0.15) 

4.34 

(0.15) 
4.41 (0.20) 

4.58 

(0.49) 
4.76 (0.29) 

4.94 

(0.34) 

Wall area percent 

(WAP) 
60.2 (2.8) 62.3 (3.1) 61.2 (3.3) 62.9 (3.3) 63.2 (3.7) 65.6 (4.1) 73.2 (3.8) 74.8 (2.9) 76.1 (3) 

Gas trapping, % 9.3 (0-83.4) 
34 (0.1-

87.8) 
7.2 (0-70.5) 

29.3 (0.2-

85.2) 
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Table 2: Genome-wide significant associations.  %LAA-950: percent of low attenuation area less than -950 Hounsfield units; 

Perc15 - Hounsfield Units at the 15th percentile of the density histogram; WAP percentage of the wall area compared to the total 

bronchial area. 

 

Phenotype Chr Marker Name Closest Gene 
Effect Allele 

Allele Frequency Modified Random Effects Fixed Effects 

Nhw Aa P value Beta SE P value Beta Se 
Emphysema    

%LAA-950 4 rs13141641 HHIP T 0.59 0.89 1.7 x 10
-12

 0.12 0.023 8.4 x 10
-13

 0.12 0.018 

 15 rs55676755 CHRNA3 C 0.63 0.84 2.4 x 10
-9

 -0.11 0.017 1.4 x 10
-9

 -0.11 0.017 

 6 rs2070600 AGER T 0.04 0.01 4.6 x 10
-9

 -0.14 0.11 6.5 x 10
-8

 -0.24 0.044 

 8 rs75200691 DLC1 T 0.88 0.92 9.7 x 10
-9

 0.15 0.026 5.7 x 10
-9

 0.15 0.026 

 14 rs45505795 SERPINA10 C 0.04 0.008 1.4 x 10
-8

 -0.31 0.08 9.8 x 10
-9

 -0.31 0.053 

Perc 15 8 rs74834049 DLC1 A 0.12 0.08 6.0 x 10
-10

 -3.4 0.54 3.3 x 10
-10

 -3.4 0.54 

 4 rs13141641 HHIP T 0.59 0.89 8.4 x 10
-10

 -2.2 0.39 4.7 x 10
-10

 -2.2 0.36 

Airway             

WAP 4 rs142200419 MIR2054 T 0.98 N/A 4.6x10
-9

 0.24 1 8.8x10
-5

 0.9 0.23 

Gas trapping             

% 6 rs2070600 AGER T 0.04 0.01 3.5 x 10
-9

 -0.23 0.039 2.4 x 10
-9

 -0.23 0.039 

 21 rs55706246 LINC00310 A 0.11 0.03 1.3 x 10
-8

 0.28 0.18 2.1 x 10
-7

 0.15 0.029 
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Table 3: P-values for genetic variants previously reported in genome-wide association analyses(23–26, 39, 40, 69–71).  The risk 

allele for spirometric phenotypes denotes the allele associated with a lower FEV1 or FEV1/FVC ratio, and thus would be expected to 

increase risk for COPD.   The sign associated with the P-values denotes whether the direction of association is consistent with the 

direction for COPD (increase in %LAA-950, Pi10, wall area percent, or gas trapping; decrease in Perc15).  In Table 3b, results are 

grouped by whether the smaller directional P-value was found in emphysema phenotypes (top) or airway-related phenotypes (bottom).  

Genome-wide significant loci from Table 2 (e.g. HHIP) are not included here.  All refers to all subjects, case refers to all cases 

(GOLD 1-4 or 2-4). 

Table 3a: Variants from GWAS of moderate-to-severe or severe COPD 

SNP Chr Locus Risk Allele 

Emphysema Airway 
Gas Trapping 

%LAA-950 Perc15 Pi10 Wall Area Percent 

All Case All Case All Case All Case All Case 

rs626750 11 MMP12 G 2x10-5 4x10-7 6x10-6 7x10-7 -0.1 -0 0.2 -0.1 0.008 0.1 

rs4846480 1 TGFB2 A 2x10-6 3x10-5 1x10-4 5x10-4 -0.7 -0.4 0.2 -0.9 3x10-4 0.009 

rs7937 19 RAB4B T 2x10-6 0.03 6x10-5 0.03 0.9 -0.08 0.4 -0.04 9x10-4 0.2 

rs754388 14 RIN3 C 3x10-5 0.1 5x10-5 0.04 0.4 -0.5 0.04 -0.6 0.003 0.1 

rs7671167 4 FAM13A T 3x10-4 0.3 2x10-4 0.07 0.6 -0.8 0.1 -0.5 9x10-5 0.6 

 

Table 3b: Variants from GWAS of lung function 

SNP Chr Locus Risk Allele 

Emphysema Airway 
Gas Trapping 

%LAA-950 Perc15 Pi10 Wall Area Percent 

All Case All Case All Case All Case All Case 

rs153916 5 SPATA9-RHOBTB3 T 0.001 0.02 2x10-5 0.02 -0.2 -0.3 0.9 -0.7 0.002 0.1 

rs1529672 3 RARB C 8x10-4 0.06 2x10-4 0.08 0.5 -1 0.1 0.9 2x10-4 0.03 

rs2284746 1 MFAP2 G 0.002 0.2 0.002 0.1 -0.06 -0.5 0.9 1 8x10-4 0.07 

rs12899618 15 THSD4 A 0.003 0.2 0.02 0.3 0.7 0.4 0.02 0.3 0.003 0.6 

rs7765379 6 HLA-DQB1 T 0.004 0.05 0.04 0.08 -0.4 -0.5 -0.4 -0.2 0.2 0.9 

rs9978142 21 KCNE2-LINC00310 T 0.005 0.06 0.04 0.07 -0.01 -0.05 -0.5 -0.9 0.04 0.004 
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rs3817928 6 GPR126 A 0.01 0.5 0.01 0.8 -0.1 -0.3 0.4 0.4 0.006 0.2 

rs1036429 12 CCDC38 C 0.04 0.03 0.01 0.06 -0.5 -0.5 0.1 0.5 0.04 0.4 

rs11134779 5 ADAM19 G 0.02 0.1 0.01 0.2 0.5 0.3 0.5 -0.7 0.04 0.08 

rs11172113 12 LRP1 T 0.04 -0.9 0.2 -0.6 0.4 0.6 0.5 0.09 9x10-5 0.2 

rs993925 1 TGFB2-LYPLAL1 C 0.2 -0.3 0.1 -0.1 -0.8 -0.6 -1 -0.4 0.004 0.9 

rs7594321 2 DNER C 0.2 0.6 0.1 0.8 -0.4 0.3 -0.5 -1 0.07 0.2 

              

rs2798641 6 ARMC2 T 0.5 0.3 0.6 -0.4 0.1 0.03 8x10-4 0.004 0.06 -0.7 

rs10516526 4 GSTCD/INTS12/NPNT A 0.4 -0.3 0.4 -0.2 0.04 0.009 0.001 0.003 0.006 0.3 

rs11168048 5 HTR4 T 0.05 0.5 0.09 0.8 0.06 0.2 0.002 0.07 0.3 -0.5 

rs2865531 16 CFDP1 A -1 -0.7 -0.9 -0.8 0.08 0.4 0.007 0.07 0.3 -0.3 

rs2571445 2 TNS1 A 0.4 0.2 -0.3 0.4 1 -0.5 0.008 0.1 -0.2 -0.7 

rs11654749 17 KCNJ2 T -0.1 -0.05 -0.09 -0.04 0.4 -0.5 0.02 1 -0.5 -0.3 

rs1344555 3 MECOM T -0.8 -1 -0.5 -0.8 0.5 0.7 0.3 0.05 -0.1 0.9 

rs2857595 6 NCR3-AIF1 A 0.9 0.6 0.7 0.3 0.3 0.09 0.3 0.06 -0.6 0.6 

rs11001819 10 C10orf11 G -0.04 -0.01 -0.02 -0 0.7 0.8 0.07 0.1 -1 -0.1 

rs16909898 9 PTCH1 G -1 -0.1 0.7 -0.2 0.5 -0.8 0.2 -0.9 0.1 -0.9 

rs12447804 16 MMP15 T -0.2 -0.3 -0.3 -0.3 0.6 0.5 0.7 0.2 -0.6 -0.6 

rs7068966 10 CDC123 C -0.5 -0.5 0.8 -1 -0.1 -0.1 0.2 0.9 0.8 -0.7 

rs6903823 6 ZKSCAN3 G -0.7 0.9 1 0.8 0.7 0.9 0.9 -0.9 -0.4 -0.7 

rs12477314 2 HDAC4-FLJ43879 C -0.3 -0.08 -0.3 -0.1 -0.01 -0.05 -0.6 -0.5 -0.7 -0.1 
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Figures 

Figure 1: Local association plots for genome-wide significant loci. a-e) %LAA-950, f) wall 

area percent, g) % gas trapping.  
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Additional data are available in the Supplement. 
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Supplemental Data 21 

Supplemental Methods 22 

Study Populations 23 

Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points 24 

(ECLIPSE; SCO104960, NCT00292552, www.eclipse-copd.com): ECLIPSE cases and controls 25 

were aged 40-75 with at least a 10 pack-year smoking history without other respiratory diseases 26 

and without known alpha-1 antitrypsin deficiency.  Cases were GOLD Grade 2 and above (post-27 

bronchodilator forced expiratory volume in 1 second (FEV1) < 80% predicted and FEV1/forced 28 

vital capacity (FVC) < 0.7); controls had no evidence of obstruction and FEV1 > 85% predicted.  29 

Details of the ECLIPSE study have been previously published(1). 30 

Genotyping was performed using the Illumina HumanHap 550 V3 (Illumina, San Diego, CA), 31 

and BeadStudio quality control, including reclustering on project samples was performed 32 

following Illumina guidelines. Quality control was performed using Python (www.python.org) 33 

and R (www.r-project.org) scripts in conjunction with plink (v1.05).  Subjects and markers with 34 

a call rate of < 95% were excluded.  Population stratification exclusion and adjustment on self-35 

reported white subjects was performed using EIGENSOFT Version 2.0.  Details of the 36 

genotyping and previous genome-wide association have been published(2).  Imputation was 37 

updated using MaCH and minimac with the 1000 Genomes Phase I v3 EUR reference panel as 38 

previously described(3), resulting in a total of 11,040,911 variants with Rsq > 0.3. 39 

Low-dose (120kVp and 40mAs) CT scans were performed at baseline, 1 year, and 3 year time 40 

points; baseline scans were used for the current analysis.  All scans were performed using 41 

multidetector CT scans (GE Healthcare, Milwaukee, Wis. or Siemens Healthcare, Erlangen, 42 
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Germany) and images were reconstructed using 1.0mm (Siemens) or 1.25mm (GE) contiguous 43 

slices and an intermediate spatial frequency reconstruction algorithm.  CT scanners were 44 

calibrated regularly using standard water calibration phantoms.  All CT scans were analyzed at 45 

the University of British Columbia using Pulmonary Workstation 2.0 software (VIDA 46 

Diagnostics, Coralville, IA, U.S.A.).  Airways were segmented using a region growing algorithm 47 

using the third (segmental) to fifth generation airways(4, 5).  Wall area percent was calculated 48 

using the mean value of measurements for selected segmental airways (the same as used for 49 

COPDGene below) across all lobes. 50 

National Emphysema Treatment Trial (NETT, www.nhlbi.nih.gov/health/prof/lung/nett/): 51 

NETT subjects had severe airflow obstruction by post-bronchodilator spirometry (FEV1 < 45% 52 

predicted) and evidence of emphysema on computed tomography (CT).  Subjects with 53 

significant sputum production or bronchiectasis were excluded.  Details of the NETT trial have 54 

been published(6). 55 

For the NETT Genetics Ancillary Study, we genotyped a subset of 382 self-reported white 56 

subjects without severe alpha-1 antitrypsin deficiency with available blood for genotyping who 57 

provided written consent. Genotyping was performed using the Illumina Quad 610 array 58 

(Illumina, San Diego, CA), with quality control, population stratification adjustment, and 59 

imputation procedures as previously described previously(2).  A separate set of principal 60 

components was calculated for the NETT cases.  Imputation was updated using MaCH and 61 

minimac with the 1000 Genomes Phase I v3 EUR reference panel(3) , resulting in a total of 62 

10,659,967 variants with Rsq > 0.3. 63 
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NETT CT scans were performed on one of three types of scanners (General Electric, Fairfield, 64 

CT; Siemens, Malvern, PA; or Picker International, Toronto, ON, Canada) with a range of 2- to 65 

8-mm slice thickness, with 75% of the scan data from 4 to 5 mm. Densitometric measures were 66 

performed with the Pulmonary Analysis Software Suite (PASS, Iowa City, IA).  Airway 67 

measurements were obtained using 3D Slicer (www.Slicer.org) and Airway Inspector 68 

(www.airwayinspector.org) at Brigham and Women’s Hospital. The full width at half-maximum 69 

(FWHM) method was used to measure the wall thickness and wall area of each airway.  70 

Norway (GenKOLS, Genetics of Chronic Obstructive Lung Disease, GSK code RES11080): 71 

GenKOLS cases and controls had at least a > 2.5 pack year smoking history.  Cases had post-72 

bronchodilator FEV1 < 80% predicted and FEV1/FVC < 0.7, while controls had normal 73 

spirometry.   Subjects with severe alpha-1 antitrypsin deficiency and other lung diseases (aside 74 

from asthma) were excluded.  Details of the GenKOLS study have been previously published(7). 75 

Genotyping was performed using Illumina HumanHap 550 arrays (Illumina, San Diego, CA), 76 

with quality control, population stratification adjustment, and imputation procedures as described 77 

previously.  A separate set of principal components was calculated for the subset of subjects with 78 

CT imaging data.  Imputation was updated using MaCH and minimac with the 1000 Genomes 79 

Phase I v3 EUR reference panel(3), resulting in a total of 10,657,975 variants with Rsq > 0.3. 80 

High-resolution CT chest scans were performed on a subset of the cohort using a GE LightSpeed 81 

Ultra.  A low spatial frequency reconstruction algorithm was used for density measurements, and 82 

a high spatial frequency algorithm (bone) for airway measurements. Images were analyzed at the 83 

James Hogg iCAPTURE Centre (Vancouver, BC, Canada).  Emphysema extent was assessed on 84 

lung images segmented using a modified boarder tracing algorithm with prior position 85 
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knowledge, and the extent of emphysema was assessed using the percentage of lung voxels with 86 

attenuation values less than -950 Hounsfield units (HU).  Airways with an internal perimeter > 87 

6mm were identified on the CT scans and measured using the Full Width at Half Maximum 88 

algorithm.  Details on the imaging techniques in GenKOLS have been previously described(8). 89 

COPDGene (NCT00608764, www.copdgene.org).  COPDGene subjects were of non-Hispanic 90 

white or African-American ancestry, aged 45-80 years old, with a minimum of 10 pack-years of 91 

smoking, and without a history of lung disease other than asthma.  Subjects found to have 92 

evidence of other lung disease on CT, such as significant bronchiectasis or interstitial lung 93 

disease, were excluded from the current analysis.  Genotyping was performed by Illumina (San 94 

Diego, CA) on the HumanOmniExpress array, with quality control and imputation as previously 95 

described(3), resulting in a total of 11,437,352 variants for non-Hispanic whites and 22,904,273 96 

for African-Americans with Rsq > 0.3. 97 

CT chest imaging was performed on all subjects using a standardized protocol(9).  Quantitative 98 

analysis utilized the lower-spatial-resolution smooth reconstruction algorithm.  Analysis of 99 

emphysema severity was performed on segmented lung images by using the Slicer software 100 

package (http://www.slicer.org/).  Emphysema percentage was defined as all lung voxels with a 101 

CT attenuation value of less than −950 HU. Airway analysis was performed by using the VIDA 102 

Pulmonary Workstation, version 2.0 (Vida Diagnostics, Coralville, Iowa, 103 

http://www.vidadiagnostics.com/).  Measurements were obtained along the center line of the 104 

lumen, in the middle third of the airway segment, for one segmental airway of each lung lobe 105 

including the lingula; the mean value across all lobes was used for analysis. Details of the 106 

imaging techniques have been described previously(10). 107 
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Additional Genetic Analysis Methods 108 

Imputed genotypes were included for analysis if they had an Rsq of 0.3 or greater.    Individual 109 

genetic variants were included in the meta-analysis if they were missing in no more than one 110 

study (except for gas trapping, where the variant was required to be present in both COPDGene 111 

populations); variants with minor allele frequency < 1% overall or < 0.5% in individual studies 112 

were excluded, resulting in 6.9 (gas trapping) to 7.6 million (all other phenotypes) total analyzed 113 

variants.  All variants were oriented to the ‘+’ strand of the hg19 reference assembly.  P-values 114 

were not adjusted for multiple comparisons. 115 

Our primary analyses were performed in all subjects, with a method used to specifically address 116 

ascertainment.  We additionally assessed the impact of each of the top variants in cases and non-117 

cases separately using the same methods as for the overall meta-analysis.  For results in the 118 

SERPINA10 locus, we performed a meta-analysis conditioning on the SERPINA1 Z allele by 119 

performing a linear regression including this SNP as a covariate in the model, and performing a 120 

meta-analysis on the target SNP.  121 

 122 

To determine whether loci previously described in association with lung function were enriched 123 

for nominally significant (P < 0.05) associations in our quantitative imaging, we performed a 124 

Fisher’s exact test.  To determine whether any of the variants that we identified in this analysis 125 

were expression quantitative trait loci in lung, we searched the published dataset of Hao et al 126 

(11) and data from the GTeX consortium.    Since Hao et al report only significant genotyped 127 

loci, we searched for variants in linkage disequilibrium with our top-reported variants using 128 

plink.  VEGAS version 0.8.27 (12) gene-based analysis was performed using the CEU reference 129 
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haplotypes and including the top 20 percent of SNPs for a given gene. For the GRAIL 130 

(http://www.broadinstitute.org/mpg/grail/grail.php)(13) analysis, HapMap2 CEU variants  were 131 

pruned for linkage disequilibrium using plink(14) with 250kb windows and an r
2
 of 0.1. Results 132 

with overall P-value < 1x10
-4

 were input as seed and query regions, including text from PubMed 133 

articles up to May 2012.  For the analysis using iGSEA4GWAS(15), default settings of 500kb up 134 

and downstream boundaries and canonical pathways was used.  For DEPICT(16) 135 

(http://www.broadinstitute.org/mpg/depict/), SNPs were pruned to 500kb boundaries with an r2 136 

of 0.05.  For INRICH(17), input files were pruned using an r2 of 0.05 using a range of 20kb up 137 

and downstream with 10,000 replicates.  MAGENTA(18) was run using version July 2011, 138 

under default settings.  Overlap between results from these analyses was examined using an FDR 139 

< 0.05 for iGSEA4GWAS, P < 0.005 for DEPICT, P < 0.05 for INRICH, and nominal GSEA 140 

75
th

 percentile P  < 0.05, to allow similar number of results in each dataset. 141 

For the analysis of enhancer and promoter enrichment in ENCODE data, we used Haploreg 142 

v2(19), using SNPs with GWAS P-values of < 1x10
-6

 for the top GWAS results, an r
2
 of 0.8 and 143 

using 1000 Genomes EUR Pilot data as background for enrichment.  Briefly, Haploreg calculates 144 

enrichment using the background set of variants to determine the level of overlap of specifically 145 

annotated regions from the ENCODE project, and calculates an uncorrected binomial P-value.    146 

Linkage disequilibrium between SNPs was estimated using the 1000 Genomes reference data in 147 

SNAP(20), the 1000 Genomes EUR reference data, or (for the calculation with the reported 148 

DLC1 variant) the imputed genotypes in the African-American COPDGene samples, and 149 

calculated using plink. All chromosomal positions are given using the NCBI37/hg19 assembly, 150 

and alleles are referenced to the + strand. 151 
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Supplemental Results 152 

Genome-wide Association Quality Control 153 

None of the individual genome-wide association results for each cohort and phenotype 154 

demonstrated evidence of substantial inflation of p-values (λGC range 1.0 – 1.02).  For the meta-155 

analyses, the fixed effects analysis for Pi10 in all subjects demonstrated minimal evidence of 156 

inflation (λGC =1.06, λGC1000 =1.01), the remainder of both fixed and modified random effects 157 

studies did not show evidence of inflation (λGC = 1.02).   158 

 159 

Supplemental Tables 160 
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Table S1: Detailed results for the top genome-wide association results.  Results given for each cohort.  For the analyses involving 

all subjects, the second line shows the P-values from the SPREG(21) analysis (for COPDGene and Norway) or for cases only 

(ECLIPSE). 

Phenotype Cohort Closest Gene Marker Name COPDGene non-Hispanic Whites COPDGene African-Americans ECLIPSE NETT Norway 

    Beta SE P-value Beta SE P-value Beta SE P-value Beta SE P-value Beta SE P-value 

%LAA-950 All HHIP rs13141641 0.16 0.024 7.6x10-11 0.11 0.056 0.059 0.11 0.038 0.0031 0.004 0.067 0.95 0.12 0.076 0.12 

      
5.5x10-9 

  
0.082 

  
0.12 

     
0.15 

  CHRNA3 rs55676755 -0.13 0.025 9.4x10-8 -0.094 0.045 0.037 -0.092 0.039 0.018 -0.02 0.066 0.76 -0.097 0.077 0.21 

      
3.8x10-6 

  
0.1 

  
0.015 

     
0.47 

  AGER rs2070600 -0.35 0.058 1.6x10-9 -0.22 0.18 0.21 -0.22 0.1 0.029 0.26 0.14 0.065 -0.1 0.18 0.56 

  
    

1.1x10-8 
  

0.2 
  

0.042 
     

0.41 

  DLC1 rs75200691 0.16 0.037 2.6x10-5 0.18 0.063 0.0042 0.13 0.057 0.027 0.11 0.097 0.25 0.17 0.11 0.11 

  
    

3.5x10-5 
  

0.0057 
  

0.082 
     

0.1 

  SERPINA10 rs45505795 -0.28 0.074 1.7x10-4 -0.56 0.23 0.013 -0.39 0.1 0.00011 -0.064 0.16 0.7 -0.64 0.21 0.0024 

  
    

4.4x10-4 
  

0.033 
  

0.0011 
     

0.0069 

Perc15, HU All DLC1 rs74834049 -3.3 0.7 3.0x10-6 -3.6 1.4 0.011 -3 1.5 0.052 -3.5 2.1 0.095 -5.3 2.3 0.02 

      
3.8x10-6 

  
0.015 

  
0.15 

     
0.017 

  
HHIP rs13141641 -2.5 0.45 1.7x10-8 -1 1.2 0.42 -3 0.99 0.0022 -0.25 1.4 0.86 -1.8 1.5 0.23 

      
9.3x10-7 

  
0.52 

  
0.041 

     
0.3 

WAP, % All 
MIR2054 rs142200419 1.3 0.27 1.1x10-6    1.8 0.67 0.0093 0.56 1.4 0.7 -2.8 0.71 6.9x10-5 

  
    8.0x10-6      0.0016      7.7x10-5 

Gas trapping, % All AGER rs2070600 -0.24 0.042 1.4x10-8 -0.13 0.15 0.39 
         

      
2.0x10-8 

  
0.2 

         

  
LINC00310 rs55706246 0.11 0.03 2.3x10-4 0.45 0.099 4.7x10-6 

         

      
1.0x10-4 

  
3.2x10-7 
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Table S2: Additional results from each genome-wide study.  Results with P < 1x10-6 in either the modified random effects or fixed 

effects analysis are shown. 

Phenotype Group Chr Marker Name Closest Gene Effect 

Allele 

Allele Frequency Modified Random Effrects Fixed Effects 

Emphysema      Nhw Aa P value Beta SE P value Nhw Aa 

%LAA-950, % All 9 rs3919995 ZNF462 A 0.59 0.5 1.3x10-7 -0.081 0.023 8.1x10-8 -0.088 0.016 

  20 rs183345681 CHRNA4 A 0.23 0.18 1.8x10-7 -0.12 0.023 1.1x10-7 -0.12 0.023 

  14 rs117167774 LOC100506433 T 0.013 0.013 1.8x10-7 0.47 0.23 0.00013 0.33 0.086 

  2 rs360488 FAM84A A 0.23 0.082 3.7x10-7 0.09 0.038 3.0x10-7 0.11 0.021 

  1 rs7512679 TGFB2 T 0.24 0.47 4.5x10-7 0.092 0.018 2.9x10-7 0.092 0.018 

  8 rs7823498 NRG1 T 0.79 0.73 4.6x10-7 -0.098 0.019 3.1x10-7 -0.098 0.019 

  11 rs7947523 MIR4300 C 0.68 0.44 4.9x10-7 -0.086 0.048 0.00014 -0.064 0.017 

  20 rs2070755 PCK1 C 0.49 0.4 5.3x10-7 0.11 0.047 0.00041 0.058 0.016 

  8 rs10109725 CSMD1 T 0.03 0.0069 6.3x10-7 0.28 0.14 8.6x10-6 0.25 0.055 

  5 rs924633 DNAH5 A 0.95 0.92 9.2x10-7 0.18 0.092 8.1x10-5 0.14 0.036 

  4 rs62343714 LOC401164 T 0.092 0.16 1.2x10-6 0.12 0.036 8.8x10-7 0.13 0.026 

  19 rs7937 MIA-RAB4B T 0.57 0.3 1.5x10-6 -0.08 0.016 9.7x10-7 -0.08 0.016 

 Cases 11 rs608194 MMP12 T 0.18 0.33 1.4x10-7 0.05 0.074 2.9x10-5 0.11 0.027 

  6 rs72971709 GRIK2 A 0.013 0.0029 2.6x10-7 0.38 0.31 2.6x10-5 0.44 0.1 

  18 rs12605822 ANKRD12 A 0.13 0.11 3.6x10-7 0.17 0.072 3.0x10-6 0.15 0.031 

  14 rs3811345 LINC00617 A 0.87 0.86 4.4x10-7 0.16 0.03 2.8x10-7 0.16 0.03 

  15 rs9788721 AGPHD1 T 0.62 0.62 5.5x10-7 -0.1 0.025 3.5x10-7 -0.11 0.021 

  1 rs72482608 PRRX1 A 0.62 0.52 7.6x10-7 -0.11 0.021 4.8x10-7 -0.11 0.021 

  5 rs13184316 ARL15 A 0.23 0.05 8.2x10-7 0.07 0.1 0.78 -0.0073 0.027 

Perc15, HU All 1 rs72637224 XCL2 T 0.05 0.14 3.3x10-7 3.6 1.2 2.1x10-7 3.5 0.68 

  16 rs9933712 ERCC4 A 0.021 0.38 4.2x10-7 5.2 1.8 2.6x10-7 3.7 0.72 

  20 rs183345681 CHRNA4 A 0.23 0.18 4.7x10-7 2.4 0.47 3.0x10-7 2.4 0.47 

  12 rs75751297 FLJ31485 A 0.47 0.36 6.6x10-7 2.4 0.48 4.2x10-7 2.4 0.48 

  11 rs7125940 MIR4300 T 0.34 0.58 6.9x10-7 -1.9 1 8.3x10-5 -1.4 0.35 

  15 rs144442299 UNC13C T 0.018 0.0051 7.8x10-7 -5.4 2.9 5.4x10-7 -7.4 1.5 

  20 rs2070755 PCK1 C 0.49 0.4 8.5x10-7 -2.5 1.1 0.0092 -0.88 0.34 
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  3 rs111646341 LSAMP A 0.97 0.98 9.0x10-7 5.8 1.8 5.7x10-7 5.6 1.1 

  14 rs45505795 SERPINA10 C 0.038 0.0076 9.5x10-7 6.4 2.7 2.6x10-6 5.2 1.1 

  4 rs10016562 TRPC3 T 0.62 0.73 1.0x10-6 1.6 0.5 6.4x10-7 1.7 0.35 

  8 rs7823498 NRG1 T 0.79 0.73 1.0x10-6 2 0.4 6.4x10-7 2 0.4 

  15 rs9788721 AGPHD1 T 0.62 0.62 1.1x10-6 1.7 0.35 6.7x10-7 1.7 0.35 

  6 rs2647050 HLA-DQB1 T 0.65 0.65 1.2x10-6 1.6 0.48 7.7x10-7 1.7 0.35 

  20 rs6080212 KIF16B A 0.16 0.15 1.4x10-6 -2.2 0.45 8.8x10-7 -2.2 0.45 

 Cases 10 rs139326003 MBL2 A 0.12 0.089 1.6x10-7 4.2 0.95 1.2x10-7 3.9 0.74 

  11 rs185888204 OR8B3 A 0.11 0.11 1.9x10-7 -7.1 3 2.5x10-6 -6.1 1.3 

  15 rs503464 CHRNA5 A 0.22 0.27 2.5x10-7 -3.2 0.6 1.5x10-7 -3.2 0.6 

  18 rs12605822 ANKRD12 A 0.13 0.11 4.0x10-7 -3.3 1.4 5.3x10-7 -3.6 0.71 

  1 rs72482608 PRRX1 A 0.62 0.52 5.0x10-7 2.5 0.48 3.2x10-7 2.5 0.48 

  11 rs654600 MMP12 A 0.83 0.72 5.2x10-7 -1.7 1.6 5.1x10-5 -2.5 0.63 

  4 rs13140744 TRPC3 T 0.38 0.26 8.9x10-7 -2.2 0.64 5.7x10-7 -2.4 0.48 

  1 rs75565482 XCL2 A 0.95 0.91 1.1x10-6 5.1 1.6 7.1x10-7 5.2 1.1 

  14 rs3811345 LINC00617 A 0.87 0.86 1.5x10-6 -3.4 0.7 9.5x10-7 -3.4 0.7 

Airway              

Pi10 All 8 rs13281609 CSMD3 T 0.047 0.0079 3.2x10-7 -0.044 0.01 2.2x10-7 -0.043 0.0082 

  11 rs113835537 CTSF A 0.84 0.83 8.5x10-7 0.012 0.0023 5.4x10-7 0.012 0.0023 

  1 rs654950 HIVEP3 C 0.42 0.12 8.6x10-7 -0.011 0.0055 3.5x10-6 -0.0089 0.0019 

 Cases 3 rs168302 GRM7 T 0.66 0.87 9.8x10-8 -0.016 0.004 6.0x10-8 -0.017 0.0032 

  9 rs4877691 FAM75D1 A 0.24 0.38 6.6x10-7 -0.017 0.0078 2.0x10-6 -0.016 0.0034 

  2 rs115089939 LOC647012 T 0.99 1 1.1x10-6 -0.086 0.017 7.2x10-7 -0.086 0.017 

  5 rs79581221 ATG10 T 0.014 0.0017 1.1x10-6 -0.077 0.016 7.4x10-7 -0.077 0.016 

WAP All 1 rs12724666 PDZK1P1 A 0.033 0.0092 8.7x10-8 1.1 0.2 5.9x10-8 1.1 0.2 

  8 rs2513900 AZIN1 C 0.51 0.74 2.6x10-7 0.23 0.043 1.7x10-7 0.23 0.043 

  17 rs3826538 RPA1 T 0.072 0.27 1.5x10-6 -0.35 0.071 9.3x10-7 -0.35 0.071 

 Cases 3 rs76493322 GRM7 A 0.46 0.45 3.1x10-7 -0.36 0.069 2.0x10-7 -0.36 0.069 

  2 rs10932600 ATIC A 0.62 0.73 1.3x10-6 -0.32 0.065 8.4x10-7 -0.32 0.065 

  1 rs61797053 KIAA1324 A 0.067 0.019 1.5x10-6 0.67 0.14 9.5x10-7 0.67 0.14 

Gas Trapping              
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 All 4 rs1512281 HHIP-AS1 A 0.59 0.88 2.3x10-7 0.082 0.016 1.9x10-7 0.082 0.016 

  8 rs74834049 DLC1 A 0.11 0.082 6.1x10-7 0.12 0.024 5.0x10-7 0.12 0.024 

  1 rs6669119 PAX7 T 0.1 0.12 9.90E-07 -0.14 0.062 1.60E-06 -0.11 0.024 

  8 rs2844036 ANKRD46 A 0.78 0.88 1.10E-06 -0.11 0.022 8.60E-07 -0.11 0.022 

  10 rs655766 BAMBI T 0.28 0.22 1.20E-06 0.08 0.016 9.90E-07 0.08 0.016 

 Cases 12 rs10875912 MLL2 T 0.66 0.67 8.30E-08 -0.091 0.017 7.10E-08 -0.091 0.017 

  20 rs430086 MACROD2 A 0.98 0.86 2.50E-07 0.16 0.16 9.80E-06 0.19 0.044 

  2 rs72822868 SNAR-H T 0.91 0.98 5.20E-07 0.23 0.046 4.30E-07 0.23 0.046 

  12 rs2460882 SP1 T 0.84 0.38 6.40E-07 0.11 0.022 5.30E-07 0.11 0.022 

  11 rs1789001 OR9G4 A 0.57 0.43 6.80E-07 0.079 0.024 5.60E-07 0.084 0.017 

  6 rs12527942 MRPL14 T 0.03 0.048 9.40E-07 0.32 0.34 0.033 0.1 0.047 

  8 rs13259853 CSMD1 A 0.44 0.099 1.00E-06 -0.088 0.022 8.30E-07 -0.09 0.018 

  17 rs12449664 NTN1 A 0.14 0.084 1.10E-06 0.15 0.03 9.10E-07 0.15 0.03 
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Table S3: Lookup of top quantitative CT association results in all subjects within separate analyses in COPD cases and non-cases. 

Phenotype Chr Marker Name Closest Gene Effect Allele 

Cases Non-cases 

Modified Random Effects Fixed Effects Modified Random Effects Fixed Effects 

P value Beta SE P value Beta Se P value Beta SE P value Beta Se 

%LAA-950 4 rs13141641 HHIP T 4.4 x 10
-5

 0.09 0.030 3.6 x 10
-5

 0.09 0.021 2.0x10
-2

 0.05 0.021 1.5 x 10
-2

 0.05 0.021 

 15 rs55676755 CHRNA3 C 3.2 x 10
-6

 -0.08 0.034 3.1 x 10
-6

 -0.09 0.021 5.1 x 10
-1

 0.02 0.022 4.4 x 10
-1

 0.02 0.022 

 6 rs2070600 AGER T 1.9 x 10
-2

 -0.08 0.095 3.1 x 10
-2

 -0.12 0.054 1.9 x 10
-3

 -0.11 0.126 4.4 x 10
-3

 -0.18 0.073 

 8 rs75200691 DLC1 T 6.3 x 10
-3

 0.09 0.032 4.4 x 10
-3

 0.09 0.032 1.4 x 10
-4

 0.12 0.032 9.4 x 10
-5

 0.12 0.032 

 14 rs45505795 SERPINA10 C 3.9 x 10
-4

 -0.21 0.056 2.6 x 10
-4

 -0.21 0.056 1.8 x 10
-2

 -0.18 0.073 1.4 x 10
-2

 -0.18 0.073 

Perc 15 8 rs74834049 DLC1 A 7.5 x 10
-4

 -2.6 0.74 5.1 x 10
-4

 -2.6 0.74 2.7 x 10
-4

 -0.27 0.81 1.9 x 10
-4

 -2.4 0.064 

 4 rs13141641 HHIP T 8.3 x 10
-5

 -2.0 0.49 5.5 x 10
-5

 -2.0 0.49 2.7 x 10
-1

 -0.53 0.43 2.2 x 10
-1

 -0.52 0.43 

Airway                 

WAP 4 rs142200419 MIR2054 T 3.1x10
-4

 0.30 1 3.9x10
-2

 0.7 0.34 3.7x10
-3

 -0.29 1.23 1.7x10
-2

 0.71 0.30 

Gas trapping                 

% 6 rs2070600 AGER T 5.2 x 10
-3

 -0.15 0.083 4.4 x 10
-3

 -0.13 0.047 5.1 x 10
-4

 -0.18 0.05 4.3 x 10
-4

 -0.18 0.050 

 21 rs55706246 LINC00310 A 3.7 x 10
-3

 0.15 0.099 3.2 x 10
-3

 0.09 0.032 2.2 x 10
-2

 0.19 0.159 3.9 x 10
-2

 0.08 0.038 

 

 

Table S4: Top overall quantitative CT loci not previously reported in case-control association analyses for moderate-to-severe and 

severe COPD in COPDGene, ECLIPSE, GenKOLS, and NETT/NAS(3) 

Chr 
Marker 

Name 
Closest Gene Effect Allele 

Moderate-To-Severe COPD Severe COPD 

P-value Beta P-value Beta 

6 rs2070600 AGER T 2.9x10
-4

 -0.35 1.4x10
-5

 -0.45 

8 rs75200691 DLC1 T 0.35 0.05 0.21 0.08 

8 rs74834049 DLC1 A 0.39 -0.04 0.20 -0.08 

14 rs45505795 SERPINA10 C 3.4x10
-5

 0.42 1.6x10
-5

 0.51 

4 rs142200419 MIR2054 T 0.25 0.19 0.47 0.14 
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21 rs55706246 LINC00310 A 6.5x10
-3

 -0.16 1.2x10
-2

 -0.18 
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