190 research outputs found

    Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat

    Get PDF
    Acknowledgements Thank you to Professor Ahmet Hoke (Johns Hopkins, Baltimore, USA) for the gift of DRG cells; and to Professor Patrick M. Dougherty (MD Anderson Cancer Center, Texas, USA) for sharing his expertise in the rat model. Funding The study was funded by the Association of Anaesthetists of Great Britain and Ireland, the British Journal of Anaesthesia/Royal College of Anaesthetists and the Melville Trust.Peer reviewedPublisher PD

    Methods for Assessing Mitochondrial Function in Diabetes

    Get PDF
    A growing body of research is investigating the potential contribution of mitochondrial function to the etiology of type 2 diabetes. Numerous in vitro, in situ, and in vivo methodologies are available to examine various aspects of mitochondrial function, each requiring an understanding of their principles, advantages, and limitations. This review provides investigators with a critical overview of the strengths, limitations and critical experimental parameters to consider when selecting and conducting studies on mitochondrial function. In vitro (isolated mitochondria) and in situ (permeabilized cells/tissue) approaches provide direct access to the mitochondria, allowing for study of mitochondrial bioenergetics and redox function under defined substrate conditions. Several experimental parameters must be tightly controlled, including assay media, temperature, oxygen concentration, and in the case of permeabilized skeletal muscle, the contractile state of the fibers. Recently developed technology now offers the opportunity to measure oxygen consumption in intact cultured cells. Magnetic resonance spectroscopy provides the most direct way of assessing mitochondrial function in vivo with interpretations based on specific modeling approaches. The continuing rapid evolution of these technologies offers new and exciting opportunities for deciphering the potential role of mitochondrial function in the etiology and treatment of diabetes

    Ubiquinone Analogs: A Mitochondrial Permeability Transition Pore-Dependent Pathway to Selective Cell Death

    Get PDF
    International audienceBACKGROUND: Prolonged opening of the mitochondrial permeability transition pore (PTP) leads to cell death. Various ubiquinone analogs have been shown to regulate PTP opening but the outcome of PTP regulation by ubiquinone analogs on cell fate has not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS: The effects of ubiquinone 0 (Ub(0)), ubiquinone 5 (Ub(5)), ubiquinone 10 (Ub(10)) and decyl-ubiquinone (DUb) were studied in freshly isolated rat hepatocytes, cultured rat liver Clone-9 cells and cancerous rat liver MH1C1 cells. PTP regulation by ubiquinones differed significantly in permeabilized Clone-9 and MH1C1 cells from that previously reported in liver mitochondria. Ub(0) inhibited PTP opening in isolated hepatocytes and Clone-9 cells, whereas it induced PTP opening in MH1C1 cells. Ub(5) did not affect PTP opening in isolated hepatocytes and MH1C1 cells, but it induced PTP opening in Clone-9 cells. Ub(10) regulated PTP in isolated hepatocytes, whereas it did not affect PTP opening in Clone-9 and MH1C1 cells. Only DUb displayed the same effect on PTP regulation in the three hepatocyte lines tested. Despite such modifications in PTP regulation, competition between ubiquinones still occurred in Clone-9 and MH1C1 cells. As expected, Ub(5) induced a PTP-dependent cell death in Clone-9, while it did not affect MH1C1 cell viability. Ub(0) induced a PTP-dependent cell death in MH1C1 cells, but was also slightly cytotoxic in Clone-9 by an oxidative stress-dependent mechanism. CONCLUSIONS/SIGNIFICANCE: We found that various ubiquinone analogs regulate PTP in different ways depending on the cell studied. We took advantage of this unique property to develop a PTP opening-targeted strategy that leads to cell death specifically in cells where the ubiquinone analog used induces PTP opening, while sparing the cells in which it does not induce PTP opening

    The anthelmintic drug niclosamide and its analogues activate the Parkinson's disease associated protein kinase PINK1

    Get PDF
    Mutations in PINK1, which impair its catalytic kinase activity, are causal for autosomal recessive early onset Parkinson's disease (PD). Various studies have indicated that the activation of PINK1 could be a useful strategy in treating neurodegenerative diseases such as PD. Herein, we show that the anthelmintic drug niclosamide and its analogues are capable of activating PINK1 in cells via reversible impairment of the mitochondrial membrane potential. Using these compounds, we demonstrate for the first time that the PINK1 pathway is active and detectable in primary neurons. Our findings suggest that niclosamide and its analogues are robust compounds to study the PINK1 pathway and may hold promise as a therapeutic strategy in Parkinson's and related disorders

    When the strategies for cellular selectivity fail. Challenges and surprises in the design and application of fluorescent benzothiadiazole derivatives for mitochondrial staining

    Get PDF
    This work describes a series of fluorescent 2,1,3-benzothiadiazole derivatives (neutral, singly-charged and doubly-charged) to act as bioprobes for mitochondria. The results showed the flaws in the molecular architecture of this class of fluorophores and our attempts to direct the synthesized derivatives to the organelle. Unexpected results also showed a need for new strategies to predict the cellular selectivity of these derivatives. One of the singly-charged derivatives could stain mitochondria selectively whereas the doubly-charged stained the plasma membrane in an unexpected but highly selective manner. Co-staining experiments confirmed the cellular localization of the new derivatives. EPR experiments demonstrated the fluorescent marker that is selective for mitochondria does not interfere in the ROS production of the cells

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment

    Mesure par microscopie confocale du métabolisme mitochondrial et du niveau énergétique cellulaire au cours d’épisodes de carences en substrats et/ou en oxygène

    No full text
    Mitochondria form an information hub at the center of the cellular metabolism because of its physiological role consisting in the porduction of ATP from the degradation of porducts stemming from our food through the OXPHOS process. However, changes in the functionnig of the mitochondria can be responsible for numerous diseases. Among the different foms of metabolic stress leading to mitchondrial dysfunctions, ischemia-reperfusion can be found in numerous pathological situations. This work aims at developing a methodological approach based on confocal microscopy and image analysis to dissect –at cell level- the consequences of metabolic stress induced by episodes of deprivation in substrata associated or not with hypoxia or anoxia. Having developed the program of image analysis based on the « tophat » method, two approaches were designed to vizualize and quantify the mitochondrial function. The first one, combining TMRM labelling with NADH fluorescence made it possible to highlight some differences in the response to the stress caused by ischemia-reperfusion at the level of the respiratory chain or concerning the PTP opening in the four cellular types that were tested : HMEC-1, INS1, RT112 or pirmary heaptocyes. The second approach consisted in testing the use of biosensors designed to follow the variations of ATP concentration (ATeam) or the activation of AMPK (AMPKAR). The experimental conditions established in this work did not allow us to validate their use.La mitochondrie est un carrefour d’informations au centre du fonctionnement cellulaire puisque son rôle physiologique consiste à récupérer l’énergie fournie par la dégradation des produits issus de notre alimentation pour produire de l’ATP, par le processus d’oxydation phosphorylante. Cependant, des altérations du fonctionnement de la mitochondrie peuvent être responsables de nombreuses pathologies. Parmi les stress métaboliques pouvant entraîner un dysfonctionnement mitochondrial, l’ischémie-reperfusion est un phénomène présent également dans de nombreuses situations pathologiques. L’objectif de ce travail consiste à développer une approche méthodologique basée sur la microscopie confocale et l’analyse d’images afin de décortiquer les conséquences cellulaires des stress métaboliques induits lors d’épisodes de privation de substrats associée ou non à une privation partielle ou totale d’oxygène. Après avoir mis au point le programme d’analyse d’images basée sur la méthode du « tophat », deux approches ont été développées pour visualiser et quantifier la fonction mitochondriale. La première, qui combine le marquage du TMRM et l’autofluorescence du NADH, a permis de mettre en évidence des différences de réponses au stress d’ischémie-reperfusion au niveau de la chaîne respiratoire ou de l’ouverture du PTP pour les quatre types cellulaires testés : HMEC-1, INS1, RT112 ou hépatocytes primaires. La seconde approche a consisté à tester l’utilisation de biosenseurs permettant de suivre les variations de concentration d’ATP (Ateam) ou d’activation de l’AMPK (AMPKAR). Les conditions expérimentales réalisées dans ce travail n’ont pas permis de valider leur utilisation

    Mesure par microscopie confocale du métabolisme mitochondrial et du niveau énergétique cellulaire au cours d’épisodes de carences en substrats et/ou en oxygène

    Get PDF
    Mitochondria form an information hub at the center of the cellular metabolism because of its physiological role consisting in the porduction of ATP from the degradation of porducts stemming from our food through the OXPHOS process. However, changes in the functionnig of the mitochondria can be responsible for numerous diseases. Among the different foms of metabolic stress leading to mitchondrial dysfunctions, ischemia-reperfusion can be found in numerous pathological situations. This work aims at developing a methodological approach based on confocal microscopy and image analysis to dissect –at cell level- the consequences of metabolic stress induced by episodes of deprivation in substrata associated or not with hypoxia or anoxia. Having developed the program of image analysis based on the « tophat » method, two approaches were designed to vizualize and quantify the mitochondrial function. The first one, combining TMRM labelling with NADH fluorescence made it possible to highlight some differences in the response to the stress caused by ischemia-reperfusion at the level of the respiratory chain or concerning the PTP opening in the four cellular types that were tested : HMEC-1, INS1, RT112 or pirmary heaptocyes. The second approach consisted in testing the use of biosensors designed to follow the variations of ATP concentration (ATeam) or the activation of AMPK (AMPKAR). The experimental conditions established in this work did not allow us to validate their use.La mitochondrie est un carrefour d’informations au centre du fonctionnement cellulaire puisque son rôle physiologique consiste à récupérer l’énergie fournie par la dégradation des produits issus de notre alimentation pour produire de l’ATP, par le processus d’oxydation phosphorylante. Cependant, des altérations du fonctionnement de la mitochondrie peuvent être responsables de nombreuses pathologies. Parmi les stress métaboliques pouvant entraîner un dysfonctionnement mitochondrial, l’ischémie-reperfusion est un phénomène présent également dans de nombreuses situations pathologiques. L’objectif de ce travail consiste à développer une approche méthodologique basée sur la microscopie confocale et l’analyse d’images afin de décortiquer les conséquences cellulaires des stress métaboliques induits lors d’épisodes de privation de substrats associée ou non à une privation partielle ou totale d’oxygène. Après avoir mis au point le programme d’analyse d’images basée sur la méthode du « tophat », deux approches ont été développées pour visualiser et quantifier la fonction mitochondriale. La première, qui combine le marquage du TMRM et l’autofluorescence du NADH, a permis de mettre en évidence des différences de réponses au stress d’ischémie-reperfusion au niveau de la chaîne respiratoire ou de l’ouverture du PTP pour les quatre types cellulaires testés : HMEC-1, INS1, RT112 ou hépatocytes primaires. La seconde approche a consisté à tester l’utilisation de biosenseurs permettant de suivre les variations de concentration d’ATP (Ateam) ou d’activation de l’AMPK (AMPKAR). Les conditions expérimentales réalisées dans ce travail n’ont pas permis de valider leur utilisation
    corecore