12 research outputs found
NEUROIMAGEM E DELÍRIOS: DECIFRANDO OS PADRÕES DA MENTE DELIRANTE
To conduct an integrative literature review to investigate patterns of brain activity in patients with delusions using functional and structural neuroimaging techniques. Methodology: A systematic search was conducted in the PubMed, Scopus, and Web of Science databases to identify studies investigating patterns of brain activity in patients with delusions using functional and structural neuroimaging. Studies published in the last 20 years and providing relevant data on functional connectivity and structural brain alterations in patients with delusions were included. Data were extracted and synthesized for qualitative analysis. Results: The integrative review identified 15 studies that met the inclusion criteria. The results indicated that patients with delusions often exhibit altered patterns of brain activity, including hyperactivity in cortical regions associated with emotional processing, such as the amygdala and ventromedial prefrontal cortex. Additionally, structural alterations were observed, including reduced gray matter volume in frontal and temporal cortical areas, as well as compromised integrity of white matter in projection and association tracts. Conclusion: The integrative review demonstrated that delusions are associated with altered patterns of brain activity, characterized by emotional hyperactivity and cognitive dysfunction. Furthermore, structural alterations observed in the brains of patients with delusions may contribute to the pathogenesis of these psychopathological symptoms. These findings underscore the importance of neuroimaging in understanding the neural mechanisms underlying delusions and highlight the need for further research to further elucidate these neural patterns.Realizar uma revisão integrativa da literatura para investigar os padrões de atividade cerebral em pacientes com delírios, utilizando técnicas de neuroimagem funcional e estrutural. Metodologia: Foi realizada uma busca sistemática nas bases de dados PubMed, Scopus e Web of Science para identificar estudos que investigaram os padrões de atividade cerebral em pacientes com delírios utilizando neuroimagem funcional e estrutural. Foram incluídos estudos publicados nos últimos 20 e que fornecessem dados relevantes sobre a conectividade funcional e alterações estruturais do cérebro em pacientes com delírios. Os dados foram extraídos e sintetizados para análise qualitativa. Resultados: A revisão integrativa identificou 15 estudos que atenderam aos critérios de inclusão. Os resultados indicaram que pacientes com delírios frequentemente apresentam padrões de atividade cerebral alterados, incluindo hiperatividade em regiões corticais associadas ao processamento emocional, como a amígdala e o córtex pré-frontal ventromedial. Além disso, foram observadas alterações estruturais, como redução do volume de matéria cinzenta em áreas corticais frontais e temporais, bem como comprometimento da integridade da substância branca em tratos de projeção e associação. Conclusão: A revisão integrativa evidenciou que os delírios estão associados a padrões de atividade cerebral alterados, caracterizados por hiperatividade emocional e disfunção cognitiva. Além disso, as alterações estruturais observadas no cérebro de pacientes com delírios podem contribuir para a patogênese desses sintomas psicopatológicos. Esses achados ressaltam a importância da neuroimagem na compreensão dos mecanismos neurais subjacentes aos delírios e destacam a necessidade de futuras pesquisas para elucidar ainda mais esses padrões neurais
Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil
The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others
Resumos em andamento - Saúde Coletiva
Resumos em andamento - Saúde Coletiv
Resumos em andamento - Saúde Coletiva
Resumos em andamento - Saúde Coletiv
ABC-SPH risk score for in-hospital mortality in COVID-19 patients : development, external validation and comparison with other available scores
The majority of available scores to assess mortality risk of coronavirus disease 2019 (COVID-19) patients in the emergency department have high risk of bias. Therefore, this cohort aimed to develop and validate a score at hospital admission for predicting in-hospital mortality in COVID-19 patients and to compare this score with other existing ones. Consecutive patients (≥ 18 years) with confirmed COVID-19 admitted to the participating hospitals were included. Logistic regression analysis was performed to develop a prediction model for in-hospital mortality, based on the 3978 patients admitted between March-July, 2020. The model was validated in the 1054 patients admitted during August-September, as well as in an external cohort of 474 Spanish patients. Median (25-75th percentile) age of the model-derivation cohort was 60 (48-72) years, and in-hospital mortality was 20.3%. The validation cohorts had similar age distribution and in-hospital mortality. Seven significant variables were included in the risk score: age, blood urea nitrogen, number of comorbidities, C-reactive protein, SpO/FiO ratio, platelet count, and heart rate. The model had high discriminatory value (AUROC 0.844, 95% CI 0.829-0.859), which was confirmed in the Brazilian (0.859 [95% CI 0.833-0.885]) and Spanish (0.894 [95% CI 0.870-0.919]) validation cohorts, and displayed better discrimination ability than other existing scores. It is implemented in a freely available online risk calculator (https://abc2sph.com/). An easy-to-use rapid scoring system based on characteristics of COVID-19 patients commonly available at hospital presentation was designed and validated for early stratification of in-hospital mortality risk of patients with COVID-19
ABC<sub>2</sub>-SPH risk score for in-hospital mortality in COVID-19 patients
Objectives: The majority of available scores to assess mortality risk of coronavirus disease 2019 (COVID-19) patients in the emergency department have high risk of bias. Therefore, this cohort aimed to develop and validate a score at hospital admission for predicting in-hospital mortality in COVID-19 patients and to compare this score with other existing ones. Methods: Consecutive patients (≥ 18 years) with confirmed COVID-19 admitted to the participating hospitals were included. Logistic regression analysis was performed to develop a prediction model for in-hospital mortality, based on the 3978 patients admitted between March–July, 2020. The model was validated in the 1054 patients admitted during August–September, as well as in an external cohort of 474 Spanish patients. Results: Median (25–75th percentile) age of the model-derivation cohort was 60 (48–72) years, and in-hospital mortality was 20.3%. The validation cohorts had similar age distribution and in-hospital mortality. Seven significant variables were included in the risk score: age, blood urea nitrogen, number of comorbidities, C-reactive protein, SpO2/FiO2 ratio, platelet count, and heart rate. The model had high discriminatory value (AUROC 0.844, 95% CI 0.829–0.859), which was confirmed in the Brazilian (0.859 [95% CI 0.833–0.885]) and Spanish (0.894 [95% CI 0.870–0.919]) validation cohorts, and displayed better discrimination ability than other existing scores. It is implemented in a freely available online risk calculator (https://abc2sph.com/). Conclusions: An easy-to-use rapid scoring system based on characteristics of COVID-19 patients commonly available at hospital presentation was designed and validated for early stratification of in-hospital mortality risk of patients with COVID-19.</p
Núcleos de Ensino da Unesp: artigos 2008
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Characterisation of microbial attack on archaeological bone
As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
The PLATO Mission
International audiencePLATO (PLAnetary Transits and Oscillations of stars) is ESA's M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2 R_(Earth)) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5 %, 10 %, 10 % for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO's target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile at the beginning of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases
The PLATO Mission
International audiencePLATO (PLAnetary Transits and Oscillations of stars) is ESA's M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2 R_(Earth)) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5 %, 10 %, 10 % for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO's target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile at the beginning of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases