573 research outputs found

    Perturbed, Entropy-Based Closure for Radiative Transfer

    Full text link
    We derive a hierarchy of closures based on perturbations of well-known entropy-based closures; we therefore refer to them as perturbed entropy-based models. Our derivation reveals final equations containing an additional convective and diffusive term which are added to the flux term of the standard closure. We present numerical simulations for the simplest member of the hierarchy, the perturbed M1 or PM1 model, in one spatial dimension. Simulations are performed using a Runge-Kutta discontinuous Galerkin method with special limiters that guarantee the realizability of the moment variables and the positivity of the material temperature. Improvements to the standard M1 model are observed in cases where unphysical shocks develop in the M1 model.Comment: 35 pages, 8 figure

    Towards the development of a sustainable soya bean-based feedstock for aquaculture

    Get PDF
    Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean-based protein and a high Omega-3 fatty acid soya bean oil, enriched with alpha-linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega-3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity-preserved soya bean-based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value-added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described. Includes supplementary materials

    Towards the development of a sustainable soya bean-based feedstock for aquaculture

    Get PDF
    Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean-based protein and a high Omega-3 fatty acid soya bean oil, enriched with alpha-linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega-3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity-preserved soya bean-based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value-added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described. Includes supplementary materials

    Biological Sequence Simulation for Testing Complex Evolutionary Hypotheses: indel-Seq-Gen Version 2.0

    Get PDF
    Sequence simulation is an important tool in validating biological hypotheses as well as testing various bioinformatics and molecular evolutionary methods. Hypothesis testing relies on the representational ability of the sequence simulation method. Simple hypotheses are testable through simulation of random, homogeneously evolving sequence sets. However, testing complex hypotheses, for example, local similarities, requires simulation of sequence evolution under heterogeneous models. To this end, we previously introduced indel-Seq-Gen version 1.0 (iSGv1.0; indel, insertion/deletion). iSGv1.0 allowed heterogeneous protein evolution and motif conservation as well as insertion and deletion constraints in subsequences. Despite these advances, for complex hypothesis testing, neither iSGv1.0 nor other currently available sequence simulation methods is sufficient. indel-Seq-Gen version 2.0 (iSGv2.0) aims at simulating evolution of highly divergent DNA sequences and protein superfamilies. iSGv2.0 improves upon iSGv1.0 through the addition of lineage-specific evolution, motif conservation using PROSITE-like regular expressions, indel tracking, subsequence-length constraints, as well as coding and noncoding DNA evolution. Furthermore, we formalize the sequence representation used for iSGv2.0 and uncover a flaw in the modeling of indels used in current state of the art methods, which biases simulation results for hypotheses involving indels. We fix this flaw in iSGv2.0 by using a novel discrete stepping procedure. Finally, we present an example simulation of the calycin-superfamily sequences and compare the performance of iSGv2.0 with iSGv1.0 and random model of sequence evolution

    Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion

    Get PDF
    Diffusion MRI has been proposed as a non-invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra-axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, waveforms were optimised to minimise the resolution limit. The results show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square-wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60-80 mT/m) was found to be between 4 and 8 μm, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300 mT/m, the limit was reduced to between 2 and 5 μm

    Long-Lived Phonon Polaritons in Hyperbolic Materials

    Get PDF
    Natural hyperbolic materials with dielectric permittivities of opposite signs along different principal axes can confine long-wavelength electromagnetic waves down to the nanoscale, well below the diffraction limit. Confined electromagnetic waves coupled to phonons in hyperbolic dielectrics including hexagonal boron nitride (hBN) and α-MoO3 are referred to as hyperbolic phonon polaritons (HPPs). HPP dissipation at ambient conditions is substantial, and its fundamental limits remain unexplored. Here, we exploit cryogenic nanoinfrared imaging to investigate propagating HPPs in isotopically pure hBN and naturally abundant α-MoO3 crystals. Close to liquid-nitrogen temperatures, losses for HPPs in isotopic hBN drop significantly, resulting in propagation lengths in excess of 8 μm, with lifetimes exceeding 5 ps, thereby surpassing prior reports on such highly confined polaritonic modes. Our nanoscale, temperature-dependent imaging reveals the relevance of acoustic phonons in HPP damping and will be instrumental in mitigating such losses for miniaturized mid-infrared technologies operating at liquid-nitrogen temperatures.Research at Columbia is supported by Vannevar Bush Faculty Fellowship ONR-VB: N00014-19-1-2630. We thank A. Sternbach and S. Zhang for helpful discussions. Exfoliation and transfer of hBN onto desired substrates and electron beam lithography of gold disks were performed by J.T.M. and supported by the National Science Foundation (DMR1904793). Additional structure fabrication was supported by the Center on Precision-Assembled Quantum Materials, funded through the U.S. National Science Foundation (NSF) Materials Research Science and Engineering Centers (award no. DMR-2011738). Initial simulations and experimental design from Vanderbilt were provided by J.D.C. in collaboration with the Columbia team (D.N.B. and G.N.) and was supported by the Office of Naval Research (N00014-18-1-2107). The hBN phonon band structure calculation was performed by R.C. and L.A. and supported by the Spanish MINECO/FEDER grant (MAT2015-71035- R). Cryogenics nano-optics experiments at Columbia were solely supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award no. DE-SC0019443. D.N.B is the Gordon and Betty Moore Foundation’s EPiQS Initiative Investigator no. 9455.Peer reviewe

    Development of a World Health Organization International Reference Panel for different genotypes of hepatitis E virus for nucleic acid amplification testing.

    Get PDF
    Globally, hepatitis E virus (HEV) is a major cause of acute viral hepatitis. Epidemiology and clinical presentation of hepatitis E vary greatly by location and are affected by the HEV genotype. Nucleic acid amplification technique (NAT)-based assays are important for the detection of acute HEV infection as well for monitoring chronic cases of hepatitis E. The aim of the study was to evaluate a panel of samples containing different genotypes of HEV for use in nucleic NAT-based assays. The panel of samples comprises eleven different members including HEV genotype 1a (2 strains), 1e, 2a, 3b, 3c, 3e, 3f, 4c, 4g as well as a human isolate related to rabbit HEV. Each laboratory assayed the panel members directly against the 1 World Health Organization (WHO) International Standard (IS) for HEV RNA (6329/10) which is based upon a genotype 3 a strain. The samples for evaluation were distributed to 24 laboratories from 14 different countries and assayed on three separate days. Of these, 23 participating laboratories returned a total of 32 sets of data; 17 from quantitative assays and 15 from qualitative assays. The assays used consisted of a mixture of in-house developed and commercially available assays. The results showed that all samples were detected consistently by the majority of participants, although in some cases, some samples were detected less efficiently. Based on the results of the collaborative study the panel (code number 8578/13) was established as the "1st International Reference Panel (IRP) for all HEV genotypes for NAT-based assays" by the WHO Expert Committee on Biological Standardization. This IRP will be important for assay validation and ensuring adequate detection of different genotypes and clinically important sub-genotypes of HEV

    The number of tree species on Earth

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global groundsourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are 73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness

    The number of tree species on Earth.

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness
    corecore