100 research outputs found

    Comparison of the Pathogenic Potential of Campylobacter jejuni, C. upsaliensis and C. helveticus and Limitations of Using Larvae of Galleria mellonella as an Infection Model

    Get PDF
    Campylobacter enteritis in humans is primarily associated with C. jejuni/coli infection. Other species cause campylobacteriosis relatively infrequently; while this could be attributed to bias in diagnostic methods, the pathogenicity of non-jejuni/coli Campylobacter spp. such as C. upsaliensis and C. helveticus (isolated from dogs and cats) is uncertain. Galleria mellonella larvae are suitable models of the mammalian innate immune system and have been applied to C. jejuni studies. This study compared the pathogenicity of C. jejuni, C. upsaliensis, and C. helveticus isolates. Larvae inoculated with either C. upsaliensis or C. helveticus showed significantly higher survival than those inoculated with C. jejuni. All three Campylobacter species induced indistinguishable histopathological changes in the larvae. C. jejuni could be isolated from inoculated larvae up to eight days post-inoculation whereas C. upsaliensis and C. helveticus could only be isolated in the first two days. There was a significant variation in the hazard rate between batches of larvae, in Campylobacter strains, and in biological replicates as random effects, and in species and bacterial dose as fixed effects. The Galleria model is applicable to other Campylobacter spp. as well as C. jejuni, but may be subject to significant variation with all Campylobacter species. While C. upsaliensis and C. helveticus cannot be considered non-pathogenic, they are significantly less pathogenic than C. jejuni

    Osteoporosis and alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling

    Get PDF
    Alzheimer’s disease (AD) and osteoporosis are multifactorial progressive degenerative disorders. Increasing evidence shows that osteoporosis and hip fracture are common complication observed in AD patients, although the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS) are emerging as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-κB ligand-dependent osteoclast differentiation, but they also have cytotoxic effects that include lipoperoxidation and oxidative damage to proteins and DNA. ROS generation, which is implicated in the regulation of cellular stress response mechanisms, is an integrated, highly regulated, process under control of redox sensitive genes coding for redox proteins called vitagenes. Vitagenes, encoding for proteins such as heat shock proteins (Hsps) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein, represent a systems controlling a complex network of intracellular signaling pathways relevant to life span and involved in the preservation of cellular homeostasis under stress conditions. Consistently, nutritional anti-oxidants have demonstrated their neuroprotective potential through a hormetic-dependent activation of vitagenes. The biological relevance of dose–response affects those strategies pointing to the optimal dosing to patients in the treatment of numerous diseases. Thus, the heat shock response has become an important hormetic target for novel cytoprotective strategies focusing on the pharmacological development of compounds capable of modulating stress response mechanisms. Here we discuss possible signaling mechanisms involved in the activation of vitagenes which, relevant to bone remodeling and through enhancement of cellular stress resistance provide a rationale to limit the deleterious consequences associated to homeostasis disruption with consequent impact on the aging process

    Objective response to immune checkpoint inhibitor therapy in NRAS-mutant melanoma: A systematic review and meta-analysis

    Get PDF
    INTRODUCTION: METHODS: We performed a comprehensive literature search across several large databases. Inclusion criteria were trials, cohorts, and large case series that analyzed the primary outcome of objective response rate by RESULTS: Data on 1770 patients from ten articles were pooled for meta-analysis, and the objective response rate to ICIs was calculated to compare DISCUSSION: In this meta-analysis evaluating the impact o

    Comparison of the Pathogenic Potential of Campylobacter jejuni, C. upsaliensis and C. helveticus and Limitations of Using Larvae of Galleria mellonella as an Infection Model

    Get PDF
    Campylobacter enteritis in humans is primarily associated with C. jejuni/coli infection. Other species cause campylobacteriosis relatively infrequently ; while this could be attributed to bias in diagnostic methods, the pathogenicity of non-jejuni/coli Campylobacter spp. such as C. upsaliensis and C. helveticus (isolated from dogs and cats) is uncertain. Galleria mellonella larvae are suitable models of the mammalian innate immune system and have been applied to C. jejuni studies. This study compared the pathogenicity of C. jejuni, C. upsaliensis, and C. helveticus isolates. Larvae inoculated with either C. upsaliensis or C. helveticus showed significantly higher survival than those inoculated with C. jejuni. All three Campylobacter species induced indistinguishable histopathological changes in the larvae. C. jejuni could be isolated from inoculated larvae up to eight days post-inoculation whereas C. upsaliensis and C. helveticus could only be isolated in the first two days. There was a significant variation in the hazard rate between batches of larvae, in Campylobacter strains, and in biological replicates as random effects, and in species and bacterial dose as fixed effects. The Galleria model is applicable to other Campylobacter spp. as well as C. jejuni, but may be subject to significant variation with all Campylobacter species. While C. upsaliensis and C. helveticus cannot be considered non-pathogenic, they are significantly less pathogenic than C. jejuni

    Brain structure and function: a multidisciplinary pipeline to study hominoid brain evolution

    Get PDF
    To decipher the evolution of the hominoid brain and its functions, it is essential to conduct comparative studies in primates, including our closest living relatives. However, strong ethical concerns preclude in vivo neuroimaging of great apes. We propose a responsible and multidisciplinary alternative approach that links behavior to brain anatomy in non-human primates from diverse ecological backgrounds. The brains of primates observed in the wild or in captivity are extracted and fixed shortly after natural death, and then studied using advanced MRI neuroimaging and histology to reveal macro- and microstructures. By linking detailed neuroanatomy with observed behavior within and across primate species, our approach provides new perspectives on brain evolution. Combined with endocranial brain imprints extracted from computed tomographic scans of the skulls these data provide a framework for decoding evolutionary changes in hominin fossils. This approach is poised to become a key resource for investigating the evolution and functional differentiation of hominoid brains

    A Qualitative View of Drug Use Behaviors of Mexican Male Injection Drug Users Deported from the United States

    Get PDF
    Deportees are a hidden yet highly vulnerable and numerous population. Significantly, little data exists about the substance use and deportation experiences of Mexicans deported from the United States. This pilot qualitative study describes illicit drug use behaviors among 24 Mexico-born male injection drug users (IDUs), ≥18 years old, residing in Tijuana, Mexico who self-identified as deportees from the United States. In-person interviews were conducted in Tijuana, Mexico in 2008. Content analysis of interview transcripts identified major themes in participants’ experiences. Few participants had personal or family exposures to illicit drugs prior to their first U.S. migration. Participants reported numerous deportations. Social (i.e., friends/family, post-migration stressors) and environmental factors (e.g., drug availability) were perceived to contribute to substance use initiation in the U.S. Drugs consumed in the United States included marijuana, heroin, cocaine, methamphetamine, and crack. More than half of men were IDUs prior to deportation. Addiction and justice system experiences reportedly contributed to deportation. After deportation, several men injected new drugs, primarily heroin or methamphetamine, or a combination of both drugs. Many men perceived an increase in their substance use after deportation and reported shame and loss of familial social and economic support. Early intervention is needed to stem illicit drug use in Mexican migrant youths. Binational cooperation around migrant health issues is warranted. Migrant-oriented programs may expand components that address mental health and drug use behaviors in an effort to reduce transmission of blood-borne infections. Special considerations are merited for substance users in correctional systems in the United States and Mexico, as well as substance users in United States immigration detention centers. The health status and health behaviors of deportees are likely to impact receiving Mexican communities. Programs that address health, social, and economic issues may aid deportees in resettling in Mexico

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF
    BACKGROUND: Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19. METHODS: The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 μg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 μg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (anti-spike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing. FINDINGS: Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6-77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3-214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030-27 162), which increased to 37 460 ELU/mL (31 996-43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41-1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996-30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826-64 452), with a geometric mean fold change of 2·19 (1·90-2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37-14·32) and 15·90 (12·92-19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24-16·54] in the BNT162b2 group and 6·22 [3·90-9·92] in the mRNA-1273 group). INTERPRETATION: Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose. FUNDING: UK Vaccine Task Force and National Institute for Health Research

    Persistence of immunogenicity after seven COVID-19 vaccines given as third dose boosters following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK: three month analyses of the COV-BOOST trial

    Get PDF
    OBJECTIVES: To evaluate the persistence of immunogenicity three months after third dose boosters. METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose. The analysis was conducted using all randomised participants who were SARS-CoV-2 naïve during the study. RESULTS: Among the 2883 participants randomised, there were 2422 SARS-CoV-2 naïve participants until D84 visit included in the analysis with median age of 70 (IQR: 30-94) years. In the participants who had two initial doses of ChAd, schedules using mRNA vaccines as third dose have the highest anti-spike IgG at D84 (e.g. geometric mean concentration of 8674 ELU/ml (95% CI: 7461-10085) following ChAd/ChAd/BNT). However, in people who had two initial doses of BNT there was no significant difference at D84 in people given ChAd versus BNT (geometric mean ratio (GMR) of 0.95 (95%CI: 0.78, 1.15). Also, people given Ad26.COV2.S (Janssen; hereafter referred to as Ad26) as a third dose had significantly higher anti-spike IgG at D84 than BNT (GMR of 1.20, 95%CI: 1.01,1.43). Responses at D84 between people who received BNT (15 μg) or BNT (30 μg) after ChAd/ChAd or BNT/BNT were similar, with anti-spike IgG GMRs of half-BNT (15 μg) versus BNT (30 μg) ranging between 0.74-0.86. The decay rate of cellular responses were similar between all the vaccine schedules and doses. CONCLUSIONS: 84 days after a third dose of COVID-19 vaccine the decay rates of humoral response were different between vaccines. Adenoviral vector vaccine anti-spike IgG concentration at D84 following BNT/BNT initial doses were higher than for a three dose (BNT/BNT/BNT) schedule. Half dose BNT immune responses were similar to full dose responses. While high antibody tires are desirable in situations of high transmission of new variants of concern, the maintenance of immune responses that confer long-lasting protection against severe disease or death is also of critical importance. Policymakers may also consider adenoviral vector, fractional dose of mRNA, or other non-mRNA vaccines as third doses

    Single-cell analysis implicates Th17-to-Th2 cell plasticity in the pathogenesis of palmoplantar pustulosis

    Get PDF
    Background Palmoplantar pustulosis (PPP) is a severe inflammatory skin disorder, characterised by eruptions of painful, neutrophil-filled pustules on the palms and soles. While PPP has a profound effect on quality of life, it remains poorly understood and notoriously difficult to treat. Objective We sought to investigate the immune pathways that underlie the pathogenesis of PPP. Methods We applied bulk- and single-cell RNA-sequencing methods to the analysis of skin biopsies and peripheral blood mononuclear cells. We validated our results by flow cytometry and immune fluorescence microscopy Results Bulk RNA-sequencing of patient skin detected an unexpected signature of T-cell activation, with a significant overexpression of several Th2 genes typically upregulated in atopic dermatitis. To further explore these findings, we carried out single-cell RNA-sequencing in peripheral blood mononuclear cells of healthy and affected individuals. We found that the memory CD4+T-cells of PPP patients were skewed towards a Th17 phenotype, a phenomenon that was particularly significant among CLA+ skin-homing cells. We also identified a subset of memory CD4+ T-cells which expressed both Th17 (KLRB1/CD161) and Th2 (GATA3) markers, with pseudo-time analysis suggesting that the population was the result of Th17 to Th2 plasticity. Interestingly, the GATA3+/CD161+ cells were over-represented among the PBMCs of affected individuals, both in the scRNA-seq dataset and in independent flow-cytometry experiments. Dual positive cells were also detected in patient skin by means of immune fluorescence microscopy. Conclusions These observations demonstrate that PPP is associated with complex T-cell activation patterns and may explain why biologics that target individual T-helper populations have shown limited therapeutic efficacy. Clinical implications The simultaneous activation of Th17 and Th2 responses in PPP supports the therapeutic use of agents that inhibit multiple T-cell pathways
    corecore