188 research outputs found

    Collaboration and knowledge exchange between scholars in Britain and the empire, 1830–1914

    Get PDF
    In recent years there has been a growing interest among historians in the British Empire as a space of knowledge production and circulation. Much of this work assumes that scholarly cooperation and collaboration between individuals and institutions within the Empire had the effect (and often also the aim) of strengthening both imperial ties and the idea of empire. This chapter argues, however, that many examples of scholarly travel, exchange, and collaboration were undertaken with very different goals in mind. In particular, it highlights the continuing importance of an ideal of scientific internationalism, which stressed the benefits of scholarship for the whole of humanity and prioritized the needs and goals of individual academic and scientific disciplines. As the chapter shows, some scholars even went on to develop nuanced critiques of the imperial project while using the very structures of empire to further their own individual, disciplinary and institutional goals

    The Different Physical Mechanisms that Drive the Star-Formation Histories of Giant and Dwarf Galaxies

    Full text link
    We present an analysis of star-formation and nuclear activity in galaxies as a function of both luminosity and environment in the SDSS DR4 dataset. Using a sample of 27753 galaxies at 0.00590% complete to Mr=-18.0 we find that the EW(Ha) distribution is strongly bimodal, allowing galaxies to be robustly separated into passive and star-forming populations about a value EW(Ha)=2A. In high-density regions ~70% of galaxies are passive independent of luminosity. In the rarefied field however, the fraction of passively-evolving galaxies is a strong function of luminosity, dropping from ~50% for Mr<-21 to zero by Mr~-18. Indeed for the lowest luminosity range covered (-18<Mr<-16) none of the ~600 galaxies in the lowest density quartile are passive. The few passively-evolving dwarf galaxies in field regions appear as satellites to bright (~L*) galaxies. The fraction of galaxies with optical AGN signatures decreases steadily from ~50% at Mr~-21 to ~0% by Mr~-18 closely mirroring the luminosity-dependence of the passive galaxy fraction in low-density environments. This result reflects the increasing importance of AGN feedback with galaxy mass for their evolution, such that the star-formation histories of massive galaxies are primarily determined by their past merger history. In contrast, the complete absence of passively-evolving dwarf galaxies more than ~2 virial radii from the nearest massive halo (i.e. cluster, group or massive galaxy) indicates that internal processes, such as merging, AGN feedback or gas consumption through star-formation, are not responsible for terminating star-formation in dwarf galaxies. Instead the evolution of dwarf galaxies is primarily driven by the mass of their host halo, probably through the combined effects of tidal forces and ram-pressure stripping.Comment: 29 pages, 11 figures. Accepted for publication in MNRA

    Time and organization studies

    Get PDF
    We argue that the more time is being attended to in organization studies, the more it is concealed. The time being concealed is not the time of clocks or the linear passage of past, present and future, it is not the time of temporal structures, and it is not the time of processual flow by which all substance is held as little more than a temporary arrest. In all these understandings time is treated as something available and, potentially, affirmative. Rather, it is a time that barely a few hundred years ago was considered a force always present and yet always against us. What, we ask, has happened to this time, the time beyond organization

    Correlation-Driven Transient Hole Dynamics Resolved in Space and Time in the Isopropanol Molecule

    Get PDF
    The possibility of suddenly ionized molecules undergoing extremely fast electron hole (or hole) dynamics prior to significant structural change was first recognized more than 20 years ago and termed charge migration. The accurate probing of ultrafast electron hole dynamics requires measurements that have both sufficient temporal resolution and can detect the localization of a specific hole within the molecule. We report an investigation of the dynamics of inner valence hole states in isopropanol where we use an x-ray pump–x-ray probe experiment, with site and state-specific probing of a transient hole state localized near the oxygen atom in the molecule, together with an ab initio theoretical treatment. We record the signature of transient hole dynamics and make the first tentative observation of dynamics driven by frustrated Auger-Meitner transitions. We verify that the effective hole lifetime is consistent with our theoretical prediction. This state-specific measurement paves the way to widespread application for observations of transient hole dynamics localized in space and time in molecules and thus to charge transfer phenomena that are fundamental in chemical and material physics

    Measures of Galaxy Environment - I. What is "Environment"?

    Full text link
    The influence of a galaxy's environment on its evolution has been studied and compared extensively in the literature, although differing techniques are often used to define environment. Most methods fall into two broad groups: those that use nearest neighbours to probe the underlying density field and those that use fixed apertures. The differences between the two inhibit a clean comparison between analyses and leave open the possibility that, even with the same data, different properties are actually being measured. In this work we apply twenty published environment definitions to a common mock galaxy catalogue constrained to look like the local Universe. We find that nearest neighbour-based measures best probe the internal densities of high-mass haloes, while at low masses the inter-halo separation dominates and acts to smooth out local density variations. The resulting correlation also shows that nearest neighbour galaxy environment is largely independent of dark matter halo mass. Conversely, aperture-based methods that probe super-halo scales accurately identify high-density regions corresponding to high mass haloes. Both methods show how galaxies in dense environments tend to be redder, with the exception of the largest apertures, but these are the strongest at recovering the background dark matter environment. We also warn against using photometric redshifts to define environment in all but the densest regions. When considering environment there are two regimes: the 'local environment' internal to a halo best measured with nearest neighbour and 'large-scale environment' external to a halo best measured with apertures. This leads to the conclusion that there is no universal environment measure and the most suitable method depends on the scale being probed.Comment: 14 pages, 9 figures, 1 table, published in MNRA

    Multiple M. tuberculosis Phenotypes in Mouse and Guinea Pig Lung Tissue Revealed by a Dual-Staining Approach

    Get PDF
    A unique hallmark of tuberculosis is the granulomatous lesions formed in the lung. Granulomas can be heterogeneous in nature and can develop a necrotic, hypoxic core which is surrounded by an acellular, fibrotic rim. Studying bacilli in this in vivo microenvironment is problematic as Mycobacterium tuberculosis can change its phenotype and also become acid-fast negative. Under in vitro models of differing environments, M. tuberculosis alters its metabolism, transcriptional profile and rate of replication. In this study, we investigated whether these phenotypic adaptations of M. tuberculosis are unique for certain environmental conditions and if they could therefore be used as differential markers. Bacilli were studied using fluorescent acid-fast auramine-rhodamine targeting the mycolic acid containing cell wall, and immunofluorescence targeting bacterial proteins using an anti-M. tuberculosis whole cell lysate polyclonal antibody. These techniques were combined and simultaneously applied to M. tuberculosis in vitro culture samples and to lung sections of M. tuberculosis infected mice and guinea pigs. Two phenotypically different subpopulations of M. tuberculosis were found in stationary culture whilst three subpopulations were found in hypoxic culture and in lung sections. Bacilli were either exclusively acid-fast positive, exclusively immunofluorescent positive or acid-fast and immunofluorescent positive. These results suggest that M. tuberculosis exists as multiple populations in most conditions, even within seemingly a single microenvironment. This is relevant information for approaches that study bacillary characteristics in pooled samples (using lipidomics and proteomics) as well as in M. tuberculosis drug development

    Cues for Early Social Skills: Direct Gaze Modulates Newborns' Recognition of Talking Faces

    Get PDF
    Previous studies showed that, from birth, speech and eye gaze are two important cues in guiding early face processing and social cognition. These studies tested the role of each cue independently; however, infants normally perceive speech and eye gaze together. Using a familiarization-test procedure, we first familiarized newborn infants (n = 24) with videos of unfamiliar talking faces with either direct gaze or averted gaze. Newborns were then tested with photographs of the previously seen face and of a new one. The newborns looked longer at the face that previously talked to them, but only in the direct gaze condition. These results highlight the importance of both speech and eye gaze as socio-communicative cues by which infants identify others. They suggest that gaze and infant-directed speech, experienced together, are powerful cues for the development of early social skills

    Genomewide association study for onset age in Parkinson disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age at onset in Parkinson disease (PD) is a highly heritable quantitative trait for which a significant genetic influence is supported by multiple segregation analyses. Because genes associated with onset age may represent invaluable therapeutic targets to delay the disease, we sought to identify such genetic modifiers using a genomewide association study in familial PD. There have been previous genomewide association studies (GWAS) to identify genes influencing PD susceptibility, but this is the first to identify genes contributing to the variation in onset age.</p> <p>Methods</p> <p>Initial analyses were performed using genotypes generated with the Illumina HumanCNV370Duo array in a sample of 857 unrelated, familial PD cases. Subsequently, a meta-analysis of imputed SNPs was performed combining the familial PD data with that from a previous GWAS of 440 idiopathic PD cases. The SNPs from the meta-analysis with the lowest p-values and consistency in the direction of effect for onset age were then genotyped in a replication sample of 747 idiopathic PD cases from the Parkinson Institute Biobank of Milan, Italy.</p> <p>Results</p> <p>Meta-analysis across the three studies detected consistent association (p < 1 × 10<sup>-5</sup>) with five SNPs, none of which reached genomewide significance. On chromosome 11, the SNP with the lowest p-value (rs10767971; p = 5.4 × 10<sup>-7</sup>) lies between the genes <it>QSER1 </it>and <it>PRRG4</it>. Near the PARK3 linkage region on chromosome 2p13, association was observed with a SNP (rs7577851; p = 8.7 × 10<sup>-6</sup>) which lies in an intron of the <it>AAK1 </it>gene. This gene is closely related to <it>GAK</it>, identified as a possible PD susceptibility gene in the GWAS of the familial PD cases.</p> <p>Conclusion</p> <p>Taken together, these results suggest an influence of genes involved in endocytosis and lysosomal sorting in PD pathogenesis.</p

    The third data release of the Kilo-Degree Survey and associated data products

    Get PDF
    The Kilo-Degree Survey (KiDS) is an ongoing optical wide-field imaging survey with the OmegaCAM camera at the VLT Survey Telescope. It aims to image 1500 square degrees in four filters (ugri). The core science driver is mapping the large-scale matter distribution in the Universe, using weak lensing shear and photometric redshift measurements. Further science cases include galaxy evolution, Milky Way structure, detection of high-redshift clusters, and finding rare sources such as strong lenses and quasars. Here we present the third public data release (DR3) and several associated data products, adding further area, homogenized photometric calibration, photometric redshifts and weak lensing shear measurements to the first two releases. A dedicated pipeline embedded in the Astro-WISE information system is used for the production of the main release. Modifications with respect to earlier releases are described in detail. Photometric redshifts have been derived using both Bayesian template fitting, and machine-learning techniques. For the weak lensing measurements, optimized procedures based on the THELI data reduction and lensfit shear measurement packages are used. In DR3 stacked ugri images, weight maps, masks, and source lists for 292 new survey tiles (~300 sq.deg) are made available. The multi-band catalogue, including homogenized photometry and photometric redshifts, covers the combined DR1, DR2 and DR3 footprint of 440 survey tiles (447 sq.deg). Limiting magnitudes are typically 24.3, 25.1, 24.9, 23.8 (5 sigma in a 2 arcsec aperture) in ugri, respectively, and the typical r-band PSF size is less than 0.7 arcsec. The photometric homogenization scheme ensures accurate colors and an absolute calibration stable to ~2% for gri and ~3% in u. Separately released are a weak lensing shear catalogue and photometric redshifts based on two different machine-learning techniques.Comment: small modifications; 27 pages, 12 figures, accepted for publication in Astronomy & Astrophysic

    De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of their phylogenetic position and unique characteristics of their biology and life cycle, ferns represent an important lineage for studying the evolution of land plants. Large and complex genomes in ferns combined with the absence of economically important species have been a barrier to the development of genomic resources. However, high throughput sequencing technologies are now being widely applied to non-model species. We leveraged the Roche 454 GS-FLX Titanium pyrosequencing platform in sequencing the gametophyte transcriptome of bracken fern (<it>Pteridium aquilinum</it>) to develop genomic resources for evolutionary studies.</p> <p>Results</p> <p>681,722 quality and adapter trimmed reads totaling 254 Mbp were assembled <it>de novo </it>into 56,256 unique sequences (i.e. unigenes) with a mean length of 547.2 bp and a total assembly size of 30.8 Mbp with an average read-depth coverage of 7.0×. We estimate that 87% of the complete transcriptome has been sequenced and that all transcripts have been tagged. 61.8% of the unigenes had blastx hits in the NCBI nr protein database, representing 22,596 unique best hits. The longest open reading frame in 52.2% of the unigenes had positive domain matches in InterProScan searches. We assigned 46.2% of the unigenes with a GO functional annotation and 16.0% with an enzyme code annotation. Enzyme codes were used to retrieve and color KEGG pathway maps. A comparative genomics approach revealed a substantial proportion of genes expressed in bracken gametophytes to be shared across the genomes of <it>Arabidopsis</it>, <it>Selaginella </it>and <it>Physcomitrella</it>, and identified a substantial number of potentially novel fern genes. By comparing the list of <it>Arabidopsis </it>genes identified by blast with a list of gametophyte-specific <it>Arabidopsis </it>genes taken from the literature, we identified a set of potentially conserved gametophyte specific genes. We screened unigenes for repetitive sequences to identify 548 potentially-amplifiable simple sequence repeat loci and 689 expressed transposable elements.</p> <p>Conclusions</p> <p>This study is the first comprehensive transcriptome analysis for a fern and represents an important scientific resource for comparative evolutionary and functional genomics studies in land plants. We demonstrate the utility of high-throughput sequencing of a normalized cDNA library for <it>de novo </it>transcriptome characterization and gene discovery in a non-model plant.</p
    corecore