106 research outputs found

    An Observational Study of Nurse Staffing Ratios and Hospital Readmission among Children Admitted for Common Conditions

    Get PDF
    Background: Hospital patient-to-nurse staffing ratios are associated with quality outcomes in adult patient populations but little is known about how these factors affect paediatric care. We examined the relationship between staffing ratios and all-cause readmission (within 14 days, 15–30 days) among children admitted for common medical and surgical conditions. Methods: We conducted an observational cross-sectional study of readmissions of children in 225 hospitals by linking nurse surveys, inpatient discharge data and information from the American Hospital Association Annual Survey. Registered Nurses (N=14 194) providing direct patient care in study hospitals (N=225) and children hospitalised for common conditions (N=90 459) were included. Results: Each one patient increase in a hospital\u27s average paediatric staffing ratio increased a medical child\u27s odds of readmission within 15–30 days by a factor of 1.11, or by 11% (95% CI 1.02 to 1.20) and a surgical child\u27s likelihood of readmission within 15–30 days by a factor of 1.48, or by 48% (95% CI 1.27 to 1.73). Children treated in hospitals with paediatric staffing ratios of 1 : 4 or less were significantly less likely to be readmitted within 15–30 days. There were no significant effects of nurse staffing ratios on readmissions within 14 days. Discussion: Children with common conditions treated in hospitals in which nurses care for fewer patients each are significantly less likely to experience readmission between 15 and 30 days after discharge. Lower patient-to-nurse ratios hold promise for preventing unnecessary hospital readmissions for children through more effective predischarge monitoring of patient conditions, improved discharge preparation and enhanced quality improvement success

    The case for the continued use of the genus name Mimulus for all monkeyflowers

    Get PDF
    The genus Mimulus is a well-studied group of plant species, which has for decades allowed researchers to address a wide array of fundamental questions in biology (Wu & al. 2008; Twyford & al. 2015). Linnaeus named the type species of Mimulus (ringens L.), while Darwin (1876) used Mimulus (luteus L.) to answer key research questions. The incredible phenotypic diversity of this group has made it the focus of ecological and evolutionary study since the mid-20th century, initiated by the influential work of Clausen, Keck, and Hiesey as well as their students and collaborators (Clausen & Hiesey 1958; Hiesey & al. 1971, Vickery 1952, 1978). Research has continued on this group of diverse taxa throughout the 20th and into the 21st century (Bradshaw & al. 1995; Schemske & Bradshaw 1999; Wu & al. 2008; Twyford & al. 2015; Yuan 2019), and Mimulus guttatus was one of the first non-model plants to be selected for full genome sequencing (Hellsten & al. 2013). Mimulus has played a key role in advancing our general understanding of the evolution of pollinator shifts (Bradshaw & Schemske 2003; Cooley & al. 2011; Byers & al. 2014), adaptation (Lowry & Willis 2010; Kooyers & al. 2015; Peterson & al. 2016; Ferris & Willis 2018; Troth & al. 2018), speciation (Ramsey & al. 2003; Wright & al. 2013; Sobel & Streisfeld 2015; Zuellig & Sweigart 2018), meiotic drive (Fishman & Saunders 2008), polyploidy (Vallejo-Marín 2012; Vallejo-Marín & al. 2015), range limits (Angert 2009; Sexton et al. 2011; Grossenbacher & al. 2014; Sheth & Angert 2014), circadian rhythms (Greenham & al. 2017), genetic recombination (Hellsten & al. 2013), mating systems (Fenster & Ritland 1994; Dudash & Carr 1998; Brandvain & al. 2014) and developmental biology (Moody & al. 1999; Baker & al. 2011, 2012; Yuan 2019). This combination of a rich history of study coupled with sustained modern research activity is unparalleled among angiosperms. Across many interested parties, the name Mimulus therefore takes on tremendous biological significance and is recognizable not only by botanists, but also by zoologists, horticulturalists, naturalists, and members of the biomedical community. Names associated with a taxonomic group of this prominence should have substantial inertia, and disruptive name changes should be avoided. As members of the Mimulus community, we advocate retaining the genus name Mimulus to describe all monkeyflowers. This is despite recent nomenclature changes that have led to a renaming of most monkeyflower species to other genera.Additional co-authors: Jannice Friedman, Dena L Grossenbacher, Liza M Holeski, Christopher T Ivey, Kathleen M Kay, Vanessa A Koelling, Nicholas J Kooyers, Courtney J Murren, Christopher D Muir, Thomas C Nelson, Megan L Peterson, Joshua R Puzey, Michael C Rotter, Jeffrey R Seemann, Jason P Sexton, Seema N Sheth, Matthew A Streisfeld, Andrea L Sweigart, Alex D Twyford, John H Willis, Kevin M Wright, Carrie A Wu, Yao-Wu Yua

    Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches

    Full text link
    The following article appeared in Applied Physics Letters 103.16 (2013): 164105 and may be found at http://scitation.aip.org/content/aip/journal/apl/100/26/10.1063/1.4729825The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two 210 Pb sources producing ∼130 beta decays/hr. In ∼800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 × 10−5 at 90% C.L., corresponding to < 0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment.This work is supported in part by the National Science Foundation (Grant Nos. AST-9978911, NSF-0847342, PHY-1102795,NSF-1151869, PHY-0542066, PHY-0503729, PHY-0503629, PHY-0503641, PHY-0504224, PHY-0705052,PHY-0801708, PHY-0801712, PHY-0802575, PHY-0847342, PHY-0855299, PHY-0855525, and PHY-1205898), by the Department of Energy (Contract Nos. DE-AC03-76SF00098, DE-FG02-92ER40701, DE-FG02-94ER40823,DE-FG03-90ER40569, DE-FG03-91ER40618, and DESC0004022),by NSERC Canada (Grant Nos. SAPIN 341314 and SAPPJ 386399), and by MULTIDARK CSD2009-00064 and FPA2012-34694. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359, while SLAC is operated under Contract No. DE-AC02-76SF00515 with the United States Department of Energy

    Different Patterns of Evolution in the Centromeric and Telomeric Regions of Group A and B Haplotypes of the Human Killer Cell Ig-Like Receptor Locus

    Get PDF
    The fast evolving human KIR gene family encodes variable lymphocyte receptors specific for polymorphic HLA class I determinants. Nucleotide sequences for 24 representative human KIR haplotypes were determined. With three previously defined haplotypes, this gave a set of 12 group A and 15 group B haplotypes for assessment of KIR variation. The seven gene-content haplotypes are all combinations of four centromeric and two telomeric motifs. 2DL5, 2DS5 and 2DS3 can be present in centromeric and telomeric locations. With one exception, haplotypes having identical gene content differed in their combinations of KIR alleles. Sequence diversity varied between haplotype groups and between centromeric and telomeric halves of the KIR locus. The most variable A haplotype genes are in the telomeric half, whereas the most variable genes characterizing B haplotypes are in the centromeric half. Of the highly polymorphic genes, only the 3DL3 framework gene exhibits a similar diversity when carried by A and B haplotypes. Phylogenetic analysis and divergence time estimates, point to the centromeric gene-content motifs that distinguish A and B haplotypes having emerged ∼6 million years ago, contemporaneously with the separation of human and chimpanzee ancestors. In contrast, the telomeric motifs that distinguish A and B haplotypes emerged more recently, ∼1.7 million years ago, before the emergence of Homo sapiens. Thus the centromeric and telomeric motifs that typify A and B haplotypes have likely been present throughout human evolution. The results suggest the common ancestor of A and B haplotypes combined a B-like centromeric region with an A-like telomeric region

    Comprehensive annotation of the Parastagonospora nodorum reference genome using next-generation genomics, transcriptomics and proteogenomics

    Get PDF
    Parastagonospora nodorum, the causal agent of Septoria nodorum blotch (SNB), is an economically important pathogen of wheat (Triticum spp.), and a model for the study of necrotrophic pathology and genome evolution. The reference P. nodorum strain SN15 was the first Dothideomycete with a published genome sequence, and has been used as the basis for comparison within and between species. Here we present an updated reference genome assembly with corrections of SNP and indel errors in the underlying genome assembly from deep resequencing data as well as extensive manual annotation of gene models using transcriptomic and proteomic sources of evidence (https://github.com/robsyme/Parastagonospora_nodorum_SN15). The updated assembly and annotation includes 8,366 genes with modified protein sequence and 866 new genes. This study shows the benefits of using a wide variety of experimental methods allied to expert curation to generate a reliable set of gene models

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe
    corecore