41 research outputs found
Structure and inhibitory effects on angiogenesis and tumor development of a new vascular endothelial growth inhibitor
Blocking angiogenesis is an attractive strategy to inhibit tumor growth, invasion, and metastasis. We describe here the structure and the biological action of a new cyclic peptide derived from vascular endothelial growth factor (VEGF). This 17-amino acid molecule designated cyclopeptidic vascular endothelial growth inhibitor (cyclo-VEGI, CBO-P11) encompasses residues 79-93 of VEGF which are involved in the interaction with VEGF receptor-2. In aqueous solution, cyclo-VEGI presents a propensity to adopt a helix conformation that was largely unexpected because only \u3b2-sheet structures or random coil conformations have been observed for macrocyclic peptides. Cyclo-VEGI inhibits binding of iodinated VEGF165 to endothelial cells, endothelial cells proliferation, migration, and signaling induced by VEGF165. This peptide also exhibits anti-angiogenic activity in vivo on the differentiated chicken chorioallantoic membrane. Furthermore, cyclo-VEGI significantly blocks the growth of established intracranial glioma in nude and syngeneic mice and improves survival without side effects. Taken together, these results suggest that cyclo-VEGI is an attractive candidate for the development of novel angiogenesis inhibitor molecules useful for the treatment of cancer and other angiogenesis-related diseases
The Physics of the B Factories
This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C
The fine structure of two DNA dodecamers containing the cAMP responsive element sequence and its inverse. Nuclear magnetic resonance and molecular simulation studies.
International audience1H and 31P n.m.r. (nuclear magnetic resonance) spectroscopy have been used in conjunction with molecular simulation to determine the structure of two DNA dodecamers. The first of these, CATGACGTCATG, contains the octameric sequence CRE (cAMP responsive element), while the second is the reversed sequence, GTACTGCAGTAC. Structure determination was based on both NOESY (nuclear Overhauser spectroscopy) derived distances and COSY (correlated spectroscopy) dihedral angle data. Access to the 31P spectra also allowed the epsilon backbone angles to be determined. Considerable care was taken in deriving structural parameters from the n.m.r. data and an excellent level of agreement is obtained with the simulated conformations. Both dodecamers are found to belong to the B-DNA family; however, there is a striking difference between the CRE sequence and its inverse, the former conformation alone showing a strong structural heterogeneity.1H and 31P n.m.r. (nuclear magnetic resonance) spectroscopy have been used in conjunction with molecular simulation to determine the structure of two DNA dodecamers. The first of these, CATGACGTCATG, contains the octameric sequence CRE (cAMP responsive element), while the second is the reversed sequence, GTACTGCAGTAC. Structure determination was based on both NOESY (nuclear Overhauser spectroscopy) derived distances and COSY (correlated spectroscopy) dihedral angle data. Access to the 31P spectra also allowed the epsilon backbone angles to be determined. Considerable care was taken in deriving structural parameters from the n.m.r. data and an excellent level of agreement is obtained with the simulated conformations. Both dodecamers are found to belong to the B-DNA family; however, there is a striking difference between the CRE sequence and its inverse, the former conformation alone showing a strong structural heterogeneity
Covalent binding of a bridged pyridinium aldehyde with the self-complementary decamer [d(ATGACGTCAT)](2). Gel analysis, MALDI mass spectrometry and NMR studies
International audiencexx
An NMR study of d(CTACTGCTTTAG).d(CTAAAGCAGTAG) showing hydration water molecules in the minor groove of a TpA step.
International audienceThe hydration properties of the non-palindromic duplex d(CTACTGCTTTAG). d(CTAAAGCAGTAG) were investigated by NMR spectroscopy. The oligonucleotide possesses a heterogeneous B-DNA structure. The H2(n)-H1'(m+1) distances reflect a minor groove narrowing within the TTT/AAA segment (approximately 3.9A) and a sudden widening at the T10:A15 base-pair (approximately 5.3A), the standard B-DNA distance being approximately 5A. The facing T10pA11 and T14pA15 steps at the end of the TTTA/AAAT segment have completely different behaviors. Only A15 ending the AAA run displays NMR features comparable to those shown by adenines of TpA steps occupying the central position of TnAn (n> or =2) segments. These involve particular chemical shifts and line broadening of the H2 and H8 protons. Positive NOESY cross-peaks were measured between the water protons and the H2 protons of A15, A16 and A17 reflecting the occurrence of hydration water molecules with residence times longer than 500 picoseconds along the minor groove of the TTT/AAA segment. In contrast no water molecules with long residence times were observed neither for A3, A20 and A23 nor for A11 ending the 5'TTTA run. We confirm thus that the binding of water molecules with long residence time to adenine residues correlates with the minor groove narrowing. In contrast, the widening of the minor groove at the A11:T14 base-pair ending the TTTA/TAAA segment, likely associated to a high negative propeller twist value at this base-pair, prevents the binding of a water molecule with long residence time to A11 but not to A15 of the preceding T10:A15 base-pair. Thus, in our non-palindromic oligonucleotide the water molecules bind differently to A11 and A15 although both adenines are part of a TpA step. The slower motions occurring at A15 compared to A11 are also well explained by the present results