44 research outputs found

    Zonificación de amenazas por movimientos en masa a escala 1:25.000 para el municipio de Chinchiná, Caldas

    Get PDF
    Trabajo de InvestigaciónEsta investigación tiene como objetivo determinar y zonificar amenazas (alta, media, baja) por deslizamientos a escala 1:25.000 para el municipio de Chinchiná, Caldas, con el fin de identificar la probabilidad de ocurrencia en este municipioINTRODUCCIÓN 1. ANTECEDENTES Y JUSTIFICACIÓN 2. PLANTEAMIENTO DEL PROBLEMA 3. MARCO TEÓRICO 4. ESTADO DEL ARTE 5. OBJETIVOS 6. ALCANCE Y LIMITACIONES 7. METODOLOGÍA CONCLUSIONES RECOMENDACIONES BIBLIOGRAFÍA ANEXOSPregradoIngeniero Civi

    Draft genome sequence of chloride-tolerant Leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile

    Get PDF
    Indexación: Web of Science; PubMedLeptospirillum ferriphilum Sp-Cl is a Gram negative, thermotolerant, curved, rod- shaped bacterium, isolated from an industrial bioleaching operation in northern Chile, where chalcocite is the major copper mineral and copper hydroxychloride atacamite is present in variable proportions in the ore. This strain has unique features as compared to the other members of the species, namely resistance to elevated concentrations of chloride, sulfate and metals. Basic microbiological features and genomic properties of this biotechnologically relevant strain are described in this work. The 2,475,669 bp draft genome is arranged into 74 scaffolds of 74 contigs. A total of 48 RNA genes and 2,834 protein coding genes were predicted from its annotation; 55 % of these were assigned a putative function. Release of the genome sequence of this strain will provide further understanding of the mechanisms used by acidophilic bacteria to endure high osmotic stress and high chloride levels and of the role of chloride-tolerant iron-oxidizers in industrial bioleaching operations.https://standardsingenomics.biomedcentral.com/articles/10.1186/s40793-016-0142-

    Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice

    Get PDF
    Background: Diabetic polyneuropathy (DPN) is the most common and early developing complication of diabetes mellitus, and the key contributor for foot ulcers development, with no specific therapies available. Different studies have shown that mesenchymal stem cell (MSC) administration is able to ameliorate DPN; however, limited cell survival and safety reasons hinder its transfer from bench to bedside. MSCs secrete a broad range of antioxidant, neuroprotective, angiogenic, and immunomodulatory factors (known as conditioned medium), which are all decreased in the peripheral nerves of diabetic patients. Furthermore, the abundance of these factors can be boosted in vitro by incubating MSCs with a preconditioning stimulus, enhancing their therapeutic efficacy. We hypothesize that systemic administration of conditioned medium derived from preconditioned MSCs could reverse DPN and prevent foot ulcer formation in a mouse model of type II diabetes mellitus. Methods: Diabetic BKS db/db mice were treated with systemic administration of conditioned medium derived from preconditioned human MSCs; conditioned medium derived from non-preconditioned MSCs or vehicle after behavioral signs of DPN was already present. Conditioned medium or vehicle administration was repeated every 2 weeks for a total of four administrations, and several functional and structural parameters characteristic of DPN were evaluated. Finally, a wound was made in the dorsal surface of both feet, and the kinetics of wound closure, re-epithelialization, angiogenesis, and cell proliferation were evaluated. Results: Our molecular, electrophysiological, and histological analysis demonstrated that the administration of conditioned medium derived from non-preconditioned MSCs or from preconditioned MSCs to diabetic BKS db/db mice strongly reverts the established DPN, improving thermal and mechanical sensitivity, restoring intraepidermal nerve fiber density, reducing neuron and Schwann cell apoptosis, improving angiogenesis, and reducing chronic inflammation of peripheral nerves. Furthermore, DPN reversion induced by conditioned medium administration enhances the wound healing process by accelerating wound closure, improving the re-epithelialization of the injured skin and increasing blood vessels in the wound bed in a skin injury model that mimics a foot ulcer. Conclusions: Studies conducted indicate that MSC-conditioned medium administration could be a novel cell-free therapeutic approach to reverse the initial stages of DPN, avoiding the risk of lower limb amputation triggered by foot ulcer formation and accelerating the wound healing process in case it occurs.Fil: De Gregorio, Cristian. Universidad del Desarrollo; ChileFil: Contador, David. Universidad del Desarrollo; ChileFil: Díaz, Diego. Universidad del Desarrollo; ChileFil: Cárcamo, Constanza. Universidad del Desarrollo; ChileFil: Santapau, Daniela. Universidad del Desarrollo; ChileFil: Lobos Gonzalez, Lorena. Universidad del Desarrollo; ChileFil: Acosta, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Campero, Mario. Universidad de Chile; ChileFil: Carpio, Daniel. Universidad Austral de Chile; ChileFil: Gabriele, Caterina. University Of Catanzaro; ItaliaFil: Gaspari, Marco. University Of Catanzaro; ItaliaFil: Aliaga Tobar, Victor. Universidad de Chile; ChileFil: Maracaja Coutinho, Vinicius. Universidad de Chile; ChileFil: Ezquer, Marcelo. Universidad del Desarrollo; ChileFil: Ezquer, Fernando. Universidad del Desarrollo; Chil

    Human renal adipose tissue from normal and tumor kidney: ITS influence on renal cell carcinoma

    Get PDF
    Tumor cells can interact with neighboring adipose tissue. We evaluated components present in human adipose explants from normal (hRAN) and kidney cancer (hRAT) tissue, and we evaluated the effects of conditioned media (CMs) from hRAN and hRAT on proliferation, adhesion and migration of tumor and non- tumor human renal epithelial cell lines. In addition, we evaluated the expression of AdipoR1, ObR, CD44, vimentin, pERK and pPI3K on cell lines incubated with CMs. hRAN were obtained from healthy operated donors, and hRAT from patients who underwent a nephrectomy. hRAT showed increased levels of versican, leptin and ObR; and decreased levels of perilipin, adiponectin and AdipoR1, compared to hRAN. Cell lines showed a significant decrease in cell adhesion and increase in cell migration after incubation with hRAT-CMs vs. hRAN- or control-CMs. Surprisingly, HK-2, 786- O and ACHN cells showed a significant decrease in cell migration after incubation with hRAN-CMs vs. control-CMs. No difference in proliferation of cell lines was found after 24 or 48 h of treatment with CMs. AdipoR1 in ACHN and Caki-1 cells decreased significantly after incubation with hRAT-CMs vs. hRAN-CMs and control-CMs. ObR and CD44 increased in tumor line cells, and vimentin increased in non-tumor cells, after incubation with hRAT-CMs vs. hRAN-CMs and control-CMs. We observed an increase in the expression of pERK and pPI3K in HK-2, 786-O and ACHN, incubated with hRAT- CMs. In conclusion, results showed that adipose microenvironment can regulate thebehavior of tumor and non tumor human renal epithelial cells.Fil: Bruna, Flavia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina. Universidad del Desarrollo; Chile. Universidad Nacional de Cuyo. Facultad de Odontologia; ArgentinaFil: Romeo, Leonardo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina. Hospital Español de Mendoza; ArgentinaFil: Campo Verde Arbocco, Fiorella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Contador, David. Universidad del Desarrollo; ChileFil: Gomez, Silvina Esther. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Santiano, Flavia Eliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Sasso, Corina Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Zyla, Leila Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: López Fontana, Constanza Matilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Calvo, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Caron, Ruben Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Pistone Creydt, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentin

    Applying a new concept of embedding qualitative research: An example from a quantitative study of carers of people in later stage dementia

    Get PDF
    BACKGROUND: Qualitative methods are increasingly included in larger studies to provide a richer understanding of people's experience. This paper explores the potential of using a novel approach to embedded qualitative design as part of an observational study examining the effectiveness of home support for people in later stage dementia in England. The method involved collecting and analysing unsolicited conversational comments made by participants as they completed standardised measures. An evaluation of the method is presented using the voices of participants to illustrate its potential. METHODS: The conversations of 17 carers recruited to an observational study were audio recorded to gather commentary made while completing a structured interview. Data were interrogated using thematic analysis to investigate the feasibility of conducting an embedded qualitative study, the potential richness of the material and participants' reactions to formal questioning and participating in research. RESULTS: The findings revealed that qualitative data were available from this approach. Analysis generated three themes from carers: conflicting carer emotions; the importance of maintaining normality and agency within day-to-day life; and tensions between these desires and making use of formal services. Important issues for carers were revealed establishing the benefit of using the method. The advantages of exploiting unsolicited conversation included enhancing understanding of people's lived experience, reducing participant burden in research and easing the process of data collection. In addition, it provided an opportunity to evaluate individuals' experience of the research process. CONCLUSIONS: The findings demonstrate how unsolicited comments during structured interviews may appear incidental but can reveal important aspects of living with dementia. The method also emphasised methodological challenges for research in dementia, including the influence and impact of the research context. Further research is required to evaluate the method with other groups including people with dementia themselves

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore