88 research outputs found

    Multisystem autoimmune disease caused by increased STAT3 phosphorylation, and dysregulated gene expression

    Get PDF
    Signal transducer and activator of transcription (STAT) 3 is a member of the STAT family, and plays a major role in various immunological mechanisms.1 Mutations in STAT3 are associated with a broad spectrum of manifestations, including immunodeficiency, autoimmunity, and malignancy.2 In particular, heterozygous germline loss-of-function (LOF) mutations cause Hyper-IgE syndrome (HIES),3–5 while heterozygous germline gain-of-function (GOF) mutations have recently been associated to multi-organ autoimmune manifestations (i.e. type 1 diabetes, enteropathy, cytopenia, interstitial lung disease, hypothyroidism), lymphoproliferation, short stature, and recurrent infections (OMIM #615952).6–8 We report a 7-year-old boy who presented with early-onset severe enteropathy, and diffuse eczematous dermatitis since birth. During the first weeks of life, Hirschsprung disease was also suspected and surgically treated. Gastrointestinal and cutaneous manifestations were first ascribed to food allergy with quite a good response to amino acid-based formula. In the following months, the patient failed to thrive, and developed respiratory tract infections. At two years, the patient presented with progressive interstitial lung disease characterized by lymphocytic interstitial infiltration leading to pulmonary hypertension, tricuspid insufficiency, and right ventricular heart failure with hepatomegaly. Because of the increased risk of infections, he received intravenous (IV) immunoglobulin infusions (400 mg/kg), prophylaxis with cotrimoxazole and fluconazole. Methylprednisolone at 0.3 mg/kg/day was also given to treat autoimmune manifestations

    Withdrawal of mechanical ventilation in amyotrophic lateral sclerosis patients: a multicenter Italian survey

    Get PDF
    Background: Law 219/2017 was approved in Italy in December 2017, after a years-long debate on the autonomy of healthcare choices. This Law, for the first time in Italian legislation, guarantees the patient's right to request for withdrawal of life-sustaining treatments, including mechanical ventilation (MV). Objective: To investigate the current status of MV withdrawal in amyotrophic lateral sclerosis (ALS) patients in Italy and to assess the impact of Law 219/2017 on this practice. Methods: We conducted a Web-based survey, addressed to Italian neurologists with expertise in ALS care, and members of the Motor Neuron Disease Study Group of the Italian Society of Neurology. Results: Out of 40 ALS Italian centers, 34 (85.0%) responded to the survey. Law 219/2017 was followed by an increasing trend in MV withdrawals, and a significant increase of neurologists involved in this procedure (p 0.004). However, variations across Italian ALS centers were observed, regarding the inconsistent involvement of community health services and palliative care (PC) services, and the intervention and composition of the multidisciplinary team. Conclusions: Law 219/2017 has had a positive impact on the practice of MV withdrawal in ALS patients in Italy. The recent growing public attention on end-of-life care choices, along with the cultural and social changes in Italy, requires further regulatory frameworks that strengthen tools for self-determination, increased investment of resources in community and PC health services, and practical recommendations and guidelines for health workers involved

    CATMoS: Collaborative Acute Toxicity Modeling Suite.

    Get PDF
    BACKGROUND: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests. In silico models built using existing data facilitate rapid acute toxicity predictions without using animals. OBJECTIVES: The U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Acute Toxicity Workgroup organized an international collaboration to develop in silico models for predicting acute oral toxicity based on five different end points: Lethal Dose 50 (LD50 value, U.S. Environmental Protection Agency hazard (four) categories, Globally Harmonized System for Classification and Labeling hazard (five) categories, very toxic chemicals [LD50 (LD50≀50mg/kg)], and nontoxic chemicals (LD50>2,000mg/kg). METHODS: An acute oral toxicity data inventory for 11,992 chemicals was compiled, split into training and evaluation sets, and made available to 35 participating international research groups that submitted a total of 139 predictive models. Predictions that fell within the applicability domains of the submitted models were evaluated using external validation sets. These were then combined into consensus models to leverage strengths of individual approaches. RESULTS: The resulting consensus predictions, which leverage the collective strengths of each individual model, form the Collaborative Acute Toxicity Modeling Suite (CATMoS). CATMoS demonstrated high performance in terms of accuracy and robustness when compared with in vivo results. DISCUSSION: CATMoS is being evaluated by regulatory agencies for its utility and applicability as a potential replacement for in vivo rat acute oral toxicity studies. CATMoS predictions for more than 800,000 chemicals have been made available via the National Toxicology Program's Integrated Chemical Environment tools and data sets (ice.ntp.niehs.nih.gov). The models are also implemented in a free, standalone, open-source tool, OPERA, which allows predictions of new and untested chemicals to be made. https://doi.org/10.1289/EHP8495

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Measurement of the inclusive W± and Z/Îł* cross sections in the e and ÎŒ decay channels in pp collisions at √s=7  TeV with the ATLAS detector

    Get PDF
    The production cross sections of the inclusive Drell-Yan processes W-+/- -> l nu and Z/gamma* -> ll (l = e, mu) are measured in proton-proton collisions at root s = 7 TeV with the ATLAS detector. The cross sections are reported integrated over a fiducial kinematic range, extrapolated to the full range, and also evaluated differentially as a function of the W decay lepton pseudorapidity and the Z boson rapidity, respectively. Based on an integrated luminosity of about 35 pb(-1) collected in 2010, the precision of these measurements reaches a few percent. The integrated and the differential W-+/- and Z/gamma* cross sections in the e and mu channels are combined, and compared with perturbative QCD calculations, based on a number of different parton distribution sets available at next-to-next-to-leading order

    NMR studies on the surface accessibility of the archaeal protein Sso7d by using TEMPOL and Gd(III)(DTPA-BMA) as paramagnetic probes

    No full text
    Understanding how proteins are approached by surrounding molecules is fundamental to increase our knowledge of life at atomic resolution. Here, the surface accessibility of a multifunctional small protein, the archaeal protein Sso7d from Sulfolobus solfataricus, has been investigated by using TEMPOL and Gd(III)(DTPA-BMA) as paramagnetic probes. The DNA binding domain of Sso7d appears very accessible both to TEMPOL and Gd(III)(DTPA-BMA). Differences in paramagnetic attenuation profiles of 1H-15N HSQC protein backbone amide correlations, observed in the presence of the latter paramagnetic probes, are consistent with the hydrogen bond acceptor capability of the N-oxyl moiety of TEMPOL to surface exposed Sso7d amide groups. By using the gadolinium complex as a paramagnetic probe a better agreement between Sso7d structural features and attenuation profile is achieved. It is interesting to note that the protein P-loop region, in spite of the high surface exposure predicted by the available protein structures, is not approached by TEMPOL and only partially by Gd(III)(DTPA-BMA). © 2008 Elsevier B.V. All rights reserved

    Comparison of ‘TB2018 and ‘Senatore Cappelli’.

    No full text
    Plants of (A) ‘Senatore Cappelli’ and (B) ‘TB2018’ at the same growth stage in the field are shown. (PDF)</p
    • 

    corecore