29 research outputs found

    Tumor grafts grown on the chicken chorioallantoic membrane are distinctively characterized by MRI under functional gas challenge

    Full text link
    Recently, a tumor model based on the chorioallantoic membrane (CAM) was characterized structurally with Magnetic Resonance Imaging (MRI). Yet, capability of MRI to assess vascular functional reserve and potential of oxygenation-sensitive MRI remain largely unexplored in this model. For this purpose, we compared MC-38 colon and A549 lung adenocarcinoma cell grafts grown on the CAM, using quantitative T1 and T2* MRI readouts as imaging markers. These are associated with vascular functionality and oxygenation status when compared between periods of air and carbogen exposure. Our data show that in A549 lung adenocarcinoma cell grafts T2* values increased significantly upon carbogen exposure (p < 0.004, Wilcoxon test; no change in T1), while MC-38 grafts displayed no changes in T1 and T2*), indicating that the grafts differ in their vascular response. Heterogeneity with regard to T1 and T2* distribution within the grafts was noted. MC-38 grafts displayed larger T1 and T2* in the graft centre, while in A549 they were distributed more towards the graft surface. Finally, qualitative assessment of gadolinium-enhancement suggests that A549 grafts display more prominent enhancement compared to MC-38 grafts. Furthermore, MC-38 grafts had 65% larger volumes than A549 grafts. Histology revealed distinct underlying phenotypes of the two tumor grafts, pertaining to the proliferative status (Ki-67) and cellularity (H&E). In sum, a functional gas challenge with carbogen is feasible through gas exchange on the CAM, and it affects MRI signals associated with vascular reactivity and oxygenation status of the tumor graft planted on the CAM. Different grafts based on A549 lung adenocarcinoma and MC-38 colon carcinoma cell lines, respectively, display distinct phenotypes that can be distinguished and characterized non-invasively in ovo using MRI in the living chicken embryo

    TOI-150: A transiting hot Jupiter in the TESS southern CVZ

    Full text link
    We report the detection of a hot Jupiter ($M_{p}=1.75_{-0.17}^{+0.14}\ M_{J},, R_{p}=1.38\pm0.04\ R_{J})orbitingamiddleagedstar() orbiting a middle-aged star (\log g=4.152^{+0.030}_{-0.043})intheTransitingExoplanetSurveySatellite(TESS)southerncontinuousviewingzone() in the Transiting Exoplanet Survey Satellite (TESS) southern continuous viewing zone (\beta=-79.59^{\circ}$). We confirm the planetary nature of the candidate TOI-150.01 using radial velocity observations from the APOGEE-2 South spectrograph and the Carnegie Planet Finder Spectrograph, ground-based photometric observations from the robotic Three-hundred MilliMeter Telescope at Las Campanas Observatory, and Gaia distance estimates. Large-scale spectroscopic surveys, such as APOGEE/APOGEE-2, now have sufficient radial velocity precision to directly confirm the signature of giant exoplanets, making such data sets valuable tools in the TESS era. Continual monitoring of TOI-150 by TESS can reveal additional planets and subsequent observations can provide insights into planetary system architectures involving a hot Jupiter around a star about halfway through its main-sequence life.Comment: 13 pages, 3 figures, 2 tables, accepted to ApJ

    Trends in Space Astronomy and Cosmic Vision 2015-2025

    Get PDF
    To be published in the proceedings of the 2005 ESLAB Symposium "Trends in Space Science and Cosmic Vision 2020", held at ESTEC, 19-21 April 2005, F. Favata (ed)As a short introduction to the astronomy session, the response of the community to the Call for Themes issued by ESA and the specific themes selected by the Astronomy Working Group are briefly presented in connection with the four grand themes finally selected for the ESA Science Programme. They are placed in the context of the main discoveries of the past decade and the astronomy projects currently in their development or definition phase. Finally, possible strategies for their implementation are summarised

    Weighing stars from birth to death : mass determination methods across the HRD

    Get PDF
    Funding: C.A., J.S.G.M., and M.G.P. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 670519: MAMSIE). N.B. gratefully acknowledge financial support from the Royal Society (University Research Fellowships) and from the European Research Council (ERC-CoG-646928, Multi-Pop).The mass of a star is the most fundamental parameter for its structure, evolution, and final fate. It is particularly important for any kind of stellar archaeology and characterization of exoplanets. There exist a variety of methods in astronomy to estimate or determine it. In this review we present a significant number of such methods, beginning with the most direct and model-independent approach using detached eclipsing binaries. We then move to more indirect and model-dependent methods, such as the quite commonly used isochrone or stellar track fitting. The arrival of quantitative asteroseismology has opened a completely new approach to determine stellar masses and to complement and improve the accuracy of other methods. We include methods for different evolutionary stages, from the pre-main sequence to evolved (super)giants and final remnants. For all methods uncertainties and restrictions will be discussed. We provide lists of altogether more than 200 benchmark stars with relative mass accuracies between [0.3 ,2 ]% for the covered mass range of M ∈[0.1 ,16 ] M⊙ , 75 % of which are stars burning hydrogen in their core and the other 25 % covering all other evolved stages. We close with a recommendation how to combine various methods to arrive at a "mass-ladder" for stars.PostprintPeer reviewe

    Weighing stars from birth to death: mass determination methods across the HRD

    Get PDF
    The mass of a star is the most fundamental parameter for its structure, evolution, and final fate. It is particularly important for any kind of stellar archaeology and characterization of exoplanets. There exists a variety of methods in astronomy to estimate or determine it. In this review we present a significant number of such methods, beginning with the most direct and model-independent approach using detached eclipsing binaries. We then move to more indirect and model-dependent methods, such as the quite commonly used isochrone or stellar track fitting. The arrival of quantitative asteroseismology has opened a completely new approach to determine stellar masses and to complement and improve the accuracy of other methods. We include methods for different evolutionary stages, from the pre-main sequence to evolved (super)giants and final remnants. For all methods uncertainties and restrictions will be discussed. We provide lists of altogether more than 200 benchmark stars with relative mass accuracies between [0.3,2]%[0.3,2]\% for the covered mass range of M\in [0.1,16]\,\msun, 75%75\% of which are stars burning hydrogen in their core and the other 25%25\% covering all other evolved stages. We close with a recommendation how to combine various methods to arrive at a "mass-ladder" for stars.Comment: Invited review article for The Astronomy and Astrophysics Review. 146 pages, 16 figures, 11 tables. Accepted version by the Journal. It includes summary figure of accuracy/precision of methods for mass ranges and summary table for individual method

    Weighing stars from birth to death: mass determination methods across the HRD

    Get PDF
    The mass of a star is the most fundamental parameter for its structure, evolution, and final fate. It is particularly important for any kind of stellar archaeology and characterization of exoplanets. There exist a variety of methods in astronomy to estimate or determine it. In this review we present a significant number of such methods, beginning with the most direct and model-independent approach using detached eclipsing binaries. We then move to more indirect and model-dependent methods, such as the quite commonly used isochrone or stellar track fitting. The arrival of quantitative asteroseismology has opened a completely new approach to determine stellar masses and to complement and improve the accuracy of other methods. We include methods for different evolutionary stages, from the pre-main sequence to evolved (super)giants and final remnants. For all methods uncertainties and restrictions will be discussed. We provide lists of altogether more than 200 benchmark stars with relative mass accuracies between [0.3,2]% for the covered mass range of M∈[0.1,16]M⊙, 75% of which are stars burning hydrogen in their core and the other 25% covering all other evolved stages. We close with a recommendation how to combine various methods to arrive at a “mass-ladder” for stars.Instituto de Astrofísica de La Plat

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys

    Stress enhances emotional memory-related theta oscillations in the medial temporal lobe

    No full text
    Stressful events impact memory formation, in particular for emotionally arousing stimuli. Although these stress effects on emotional memory formation have potentially far-reaching implications, the underlying neural mechanisms are not fully understood. Specifically, the temporal processing dimension of the mechanisms involved in emotional memory formation under stress remains elusive. Here, we used magnetoencephalography (MEG) to examine the neural processes underlying stress effects on emotional memory formation with high temporal and spatial resolution and a particular focus on theta oscillations previously implicated in mnemonic binding. Healthy participants (n = 53) underwent a stress or control procedure before encoding emotionally neutral and negative pictures, while MEG was recorded. Memory for the pictures was probed in a recognition test 24 h after encoding. In this recognition test, stress did not modulate the emotional memory enhancement but led to significantly higher confidence in memory for negative compared to neutral stimuli. Our neural data revealed that stress increased memory-related theta oscillations specifically in medial temporal and occipito-parietal regions. Further, this stress-related increase in theta power emerged during memory formation for emotionally negative but not for neutral stimuli. These findings indicate that acute stress can enhance, in the medial temporal lobe, oscillations at a frequency that is ideally suited to bind the elements of an ongoing emotional episode, which may represent a mechanism to facilitate the storage of emotionally salient events that occurred in the context of a stressful encounter

    Early Intra-Articular Complement Activation in Ankle Fractures

    No full text
    Cytokine regulation possibly influences long term outcome following ankle fractures, but little is known about synovial fracture biochemistry. Eight patients with an ankle dislocation fracture were included in a prospective case series and matched with patients suffering from grade 2 osteochondritis dissecans (OCD) of the ankle. All fractures needed external fixation during which joint effusions were collected. Fluid analysis was done by ELISA measuring aggrecan, bFGF, IL-1β, IGF-1, and the complement components C3a, C5a, and C5b-9. The time periods between occurrence of fracture and collection of effusion were only significantly associated with synovial aggrecan and C5b-9 levels (P<0.001). Furthermore, synovial expressions of both proteins correlated with each other (P<0.001). Although IL-1β expression was relatively low, intra-articular levels correlated with C5a (P<0.01) and serological C-reactive protein concentrations 2 days after surgery (P<0.05). Joint effusions were initially dominated by neutrophils, but the portion of monocytes constantly increased reaching 50% at day 6 after fracture (P<0.02). Whereas aggrecan and IL-1β concentrations were not different in fracture and OCD patients, bFGF, IGF-1, and all complement components were significantly higher concentrated in ankle joints with fractures (P<0.01). Complement activation and inflammatory cell infiltration characterize the joint biology following acute ankle fractures
    corecore