597 research outputs found

    Intrarenal Resistance Index as a Prognostic Parameter in Patients with Liver Cirrhosis Compared with Other Hepatic Scoring Systems

    Get PDF
    Background and Aims: Patients with advanced liver cirrhosis who develop renal dysfunction have a poor prognosis. Elevated intrarenal resistance indices (RIs) due to renal vascular constriction have been described before in cirrhotic patients. In the current study, we prospectively investigated the course of intrarenal RIs and compared their prognostic impact with those of the Model for End-Stage Liver Disease (MELD) and the Child-Pugh scores. Methods: Sixty-three patients with liver cirrhosis underwent a baseline visit which included a sonographic examination and laboratory tests. Forty-four patients were prospectively monitored. The end points were death or survival at the day of the follow-up visit. Results: In 28 patients, a follow-up visit was performed after 22 8 months (group 1). Sixteen patients died during follow-up after 12 8 months (group 2). Group 2 patients showed a significantly higher baseline RI (0.76 +/- 0.05) than group 1 patients (RI = 0.72 +/- 0.06; p < 0.05). As shown by receiver operating characteristic analysis, the RI and the MELD score achieved similar sensitivity and specificity {[}area under the curve (AUC): 0.722; 95% confidence interval (95% CI): 0.575-0.873 vs. AUC: 0.724; 95% CI: 0.575-0.873, z = 0.029, n.s.] in predicting survival and were superior to the Child-Pugh score (AUC: 0.677; 96% Cl: 0.518-0.837). Conclusion: The RI is not inferior in sensitivity and specificity to the MELD score. Cirrhotic patients with elevated RIs have impaired short- and long-term survival. The RI may help identify high-risk patients that require special therapeutic care. Copyright (C) 2012 S. Karger AG, Base

    Propulsion Trade Studies for Spacecraft Swarm Mission Design

    Get PDF
    Spacecraft swarms constitute a challenge from an orbital mechanics standpoint. Traditional mission design involves the application of methodical processes where predefined maneuvers for an individual spacecraft are planned in advance. This approach does not scale to spacecraft swarms consisting of many satellites orbiting in close proximity; non-deterministic maneuvers cannot be preplanned due to the large number of units and the uncertainties associated with their differential deployment and orbital motion. For autonomous small sat swarms in LEO, we investigate two approaches for controlling the relative motion of a swarm. The first method involves modified miniature phasing maneuvers, where maneuvers are prescribed that cancel the differential delta V of each CubeSat's deployment vector. The second method relies on artificial potential functions (APFs) to contain the spacecraft within a volumetric boundary and avoid collisions. Performance results and required delta V budgets are summarized, indicating that each method has advantages and drawbacks for particular applications. The mini phasing maneuvers are more predictable and sustainable. The APF approach provides a more responsive and distributed performance, but at considerable propellant cost. After considering current state of the art CubeSat propulsion systems, we conclude that the first approach is feasible, but the modified APF method of requires too much control authority to be enabled by current propulsion systems

    Operating Small Sat Swarms as a Single Entity: Introducing SODA

    Get PDF
    NASA’s decadal survey determined that simultaneous measurements from a 3D volume of space are advantageous for a variety of studies in space physics and Earth science. Therefore, swarm concepts with multiple spacecraft in close proximity are a growing topic of interest in the small satellite community. Among the capabilities needed for swarm missions is a means to maintain operator-specified geometry, alignment, or separation. Swarm stationkeeping poses a planning challenge due to the limited scalability of ground resources. To address scalable control of orbital dynamics, we introduce SODA – Swarm Orbital Dynamics Advisor – a tool that accepts high-level configuration commands and provides the orbital maneuvers needed to achieve the desired type of swarm relative motion. Rather than conventional path planning, SODA’s innovation is the use of artificial potential functions to define boundaries and keepout regions. The software architecture includes high fidelity propagation, accommodates manual or automated inputs, displays motion animations, and returns maneuver commands and analytical results. Currently, two swarm types are enabled: in-train distribution and an ellipsoid volume container. Additional swarm types, simulation applications, and orbital destinations are in planning stages

    The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle

    Get PDF
    The definitive version is available at www.newphytologist.comAn understanding of nitrate (NO3-) uptake throughout the lifecycle of plants, and how this process responds to nitrogen (N) availability, is an important step towards the development of plants with improved nitrogen use efficiency (NUE). NO3- uptake capacity and transcript levels of putative high- and low-affinity NO3- transporters (NRTs) were profiled across the lifecycle of dwarf maize (Zea mays) plants grown at reduced and adequate NO3-. Plants showed major changes in high-affinity NO3- uptake capacity across the lifecycle, which varied with changing relative growth rates of roots and shoots. Transcript abundances of putative high-affinity NRTs (predominantly ZmNRT2.1 and ZmNRT2.2) were correlated with two distinct peaks in high-affinity root NO3- uptake capacity and also N availability. The reduction in NO3- supply during the lifecycle led to a dramatic increase in NO3- uptake capacity, which preceded changes in transcript levels of NRTs, suggesting a model with short-term post-translational regulation and longer term transcriptional regulation of NO3- uptake capacity. These observations offer new insight into the control of NO3- uptake by both plant developmental processes and N availability, and identify key control points that may be targeted by future plant improvement programmes to enhance N uptake relative to availability and/or demand.Trevor Garnett, Vanessa Conn, Darren Plett, Simon Conn, Juergen Zanghellini, Nenah Mackenzie, Akiko Enju, Karen Francis, Luke Holtham, Ute Roessner, Berin Boughton, Antony Bacic, Neil Shirley, Antoni Rafalski, Kanwarpal Dhugga, Mark Tester, and Brent N. Kaise

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    A Rogues’ Gallery of Andromeda's Dwarf Galaxies. I. A Predominance of Red Horizontal Branches

    Get PDF
    We present homogeneous, sub-horizontal branch photometry of twenty dwarf spheroidal satellite galaxies of M31 observed with the Hubble Space Telescope. Combining our new data for sixteen systems with archival data in the same filters for another four, we show that Andromeda dwarf spheroidal galaxies favor strikingly red horizontal branches or red clumps down to ~10^{4.2} Lsun (M_V ~ -5.8). The age-sensitivity of horizontal branch stars implies that a large fraction of the M31 dwarf galaxies have extended star formation histories (SFHs), and appear inconsistent with early star formation episodes that were rapidly shutdown. Systems fainter than ~10^{5.5} Lsun show the widest range in the ratios and morphologies of red and blue horizontal branches, indicative of both complex SFHs and a diversity in quenching timescales and/or mechanisms, which is qualitatively different from what is currently known for faint Milky Way (MW) satellites of comparable luminosities. Our findings bolster similar conclusions from recent deeper data for a handful of M31 dwarf galaxies. We discuss several sources for diversity of our data such as varying halo masses, patchy reionization, mergers/accretion, and the environmental influence of M31 and the Milky Way on the early evolution of their satellite populations. A detailed comparison between the histories of M31 and MW satellites would shed signifiant insight into the processes that drive the evolution of low-mass galaxies. Such a study will require imaging that reaches the oldest main sequence turnoffs for a significant number of M31 companions.Comment: 11 pages, 5 figures, 2 tables. ApJ in press. v2: small tweaks to the results and discussion sectio

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    corecore