53 research outputs found

    Diode Laser Microwave Induced Plasma Cavity Ringdown Spectrometer: Performance and Perspective

    Get PDF
    Recent studies combining an atmospheric-pressure plasma source (inductively coupled plasma or microwave induced plasma) with cavity ringdown spectroscopy (plasma-CRDS) have indicated significant promise for ultra-sensitive elemental measurements. Initial plasma-CRDS efforts employed an inductively coupled plasma as the atomization source and a pulsed laser system as the light source. In an effort to improve the portability and reduce the cost of the system for application purposes, we have modified our approach to include a compact microwave induced plasma and a continuous wave diode laser. A technique for controlling the coupling of the continuous wave laser to the ringdown cavity has been implemented using a standard power combiner. No acouto-optic modulator or cavity modulation is required. To test the system performance, diluted standard solutions of strontium (Sr) were introduced into the plasma by an in-house fabricated sampling device combined with an ultrasonic nebulizer. SrOH radicals were generated in the plasma and detected using both a pulsed laser system and a diode laser via a narrow band transition near 680 nm. The experimental results obtained using both light sources are compared and used for system characterization. The ringdown baseline noise and the detection limit for Sr are determined for the current experimental configuration. The results indicate that a plasma-CRDS instrument constructed using diode lasers and a compact microwave induced plasma can serve as a small, portable, and sensitive analytical tool. (C) 2004 American Institute of Physics

    Improved mechanistic model of the atmospheric redox chemistry of mercury

    Get PDF
    12 pags, 4 figs, 3 tabs. -- The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.1c03160.We present a new chemical mechanism for Hg0/HgI/HgII atmospheric cycling, including recent laboratory and computational data, and implement it in the GEOS-Chem global atmospheric chemistry model for comparison to observations. Our mechanism includes the oxidation of Hg0 by Br and OH, subsequent oxidation of HgI by ozone and radicals, respeciation of HgII in aerosols and cloud droplets, and speciated HgII photolysis in the gas and aqueous phases. The tropospheric Hg lifetime against deposition in the model is 5.5 months, consistent with observational constraints. The model reproduces the observed global surface Hg0 concentrations and HgII wet deposition fluxes. Br and OH make comparable contributions to global net oxidation of Hg0 to HgII. Ozone is the principal HgI oxidant, enabling the efficient oxidation of Hg0 to HgII by OH. BrHgIIOH and HgII(OH)2, the initial HgII products of Hg0 oxidation, respeciate in aerosols and clouds to organic and inorganic complexes, and volatilize to photostable forms. Reduction of HgII to Hg0 takes place largely through photolysis of aqueous HgII-organic complexes. 71% of model HgII deposition is to the oceans. Major uncertainties for atmospheric Hg chemistry modeling include Br concentrations, stability and reactions of HgI, and speciation and photoreduction of HgII in aerosols and clouds.This work was funded by the USEPA Science to Achieve Results (STAR) Program. This work was also supported by the Slovak Grant Agency VEGA (grant 1/0777/19), the highperformance computing facility of the Centre for Information Technology (https://uniba.sk/en/HPC-Clara) at Comenius University, and the U.S. National Science Foundation under awards 1609848 and 2004100. We thank Helene Angot (CU Boulder) for the Hg measurement data.Peer reviewe

    Fiber Loop Ringdown — a Time-Domain Sensing Technique for Multi-Function Fiber Optic Sensor Platforms: Current Status and Design Perspectives

    Get PDF
    Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detect a quantity; thus, FLRD is referred to as a time-domain sensing technique. FLRD sensors have near real-time response, multi-pass enhanced high-sensitivity, and relatively low cost (i.e., without using an optical spectral analyzer). During the last eight years since the introduction of the original form of fiber ringdown spectroscopy, there has been increasing interest in the FLRD technique in fiber optic sensor developments, and new application potential is being explored. This paper first discusses the challenging issues in development of multi-function, fiber optic sensors or sensor networks using current fiber optic sensor sensing schemes, and then gives a review on current fiber optic sensor development using FLRD technique. Finally, design perspectives on new generation, multi-function, fiber optic sensor platforms using FLRD technique are particularly presented

    Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Get PDF
    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis

    Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    No full text
    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis

    Photophoretictrapping-Raman spectroscopy for single pollens and fungal spores trapped in air

    Get PDF
    Photophoretic trapping-Raman spectroscopy (PTRS) is a new technique for measuring Raman spectra of particles that are held in air using photophoretic forces. It was initially demonstrated with Raman spectra of stro ly-absorbing carbon nanoparticles (Pan et al. [44] (Opt Express 2012 )). In the present paper we report the first demonstration of the use ofPTRS to measure Raman spectra of absorbing and weakly-absorbing bioaerosol particles (pollens and spores ). Raman spectra of three pollens and one smut spore in a size range of 6.2- 41.8 11m illuminated at 488 nm are shown. Quality spectra were obtained in the Raman s hift range of 1600- 3400 cm- I in this exploratory stud y. Distinguis hable Raman scattering signals with one or a few clear Raman peaks for all four aerosol particles were observed within the wavenumber region 2940- 3030 cm- I. Peaks in this region are consistent with previous reports of Raman peaks in the 1600- 3400 cm- I range for pollens and spores excited at 514 nm measured by a conventional Raman spectrometer. Noise in the spectra, the fluorescence background, and the weak Raman signals in most of the 1600- 3400 cm - I region make some of the spectral features barely discernable or not discernable for these bioaerosols except the strong signal within 2940- 3030 cm- I . Up to five bands are identified in the three pollens and only two bands appear in the fungal spore, but this may be because the fungal spore is so much smaller than any of the pollens. The fungal spore signal relative to the air-nitrogen Raman band is approximately 10 times smaller than that ratio for the pollens. The five bands are tentatively assigned to the CH2 symmetric stretch at 2948 cm - I, CH2 Fermi resonance stretch at 2970 cm- I, CH) symmetric stretch at 2990 cm - I, CH3 out-of-plane end asymmetric stretch at 3010 cm - I, and unsaturated = CH stretch at 3028 cm - I . The two dominant bands of the up-to-five Raman bands in the 2940- 3030 cm - I region have a consistent band spacing of 25 cm- I in all four aerosols. Finally we discuss improvements to the PTRS that should provide a system which can trap a hig her fraction of particle types and obtain Raman spectra over a larger range (e.g., 200- 3600 cm - I ) than those achieved here

    Structural Health Monitoring (SHM) of Civil Structures

    No full text
    As newer and more reliable ways of construction were developed, civilization began to spread out further and retain functional infrastructure for longer periods of time.[...
    corecore