18 research outputs found
Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor
Class B GPCRs can activate multiple signalling effectors with the potential to exhibit biased agonism in response to ligand stimulation. Previously, we highlighted key TM domain polar amino acids that were crucial for the function of the GLP-1 receptor, a key therapeutic target for diabetes and obesity. Using a combination of mutagenesis, pharmacological characterisation, mathematical and computational molecular modelling, this study identifies additional highly conserved polar residues located towards the TM helical boundaries of Class B GPCRs that are important for GLP-1 receptor stability and/or controlling signalling specificity and biased agonism. This includes (i) three positively charged residues (R3.30227, K4.64288, R5.40310) located at the extracellular boundaries of TMs 3, 4 and 5 that are predicted in molecular models to stabilise extracellular loop 2, a crucial domain for ligand affinity and receptor activation; (ii) a predicted hydrogen bond network between residues located in TMs 2 (R2.46176), 6 (R6.37348) and 7 (N7.61406 and E7.63408) at the cytoplasmic face of the receptor that is important for stabilising the inactive receptor and directing signalling specificity, (iii) residues at the bottom of TM 5 (R5.56326) and TM6 (K6.35346 and K6.40351) that are crucial for receptor activation and downstream signalling; (iv) residues predicted to be involved in stabilisation of TM4 (N2.52182 and Y3.52250) that also influence cell signalling. Collectively, this work expands our understanding of peptide-mediated signalling by the GLP-1 receptor
Future research directions on the "elusive" white shark
White sharks, Carcharodon carcharias, are often described as elusive, with little information available due to the logistical difficulties of studying large marine predators that make long-distance migrations across ocean basins. Increased understanding of aggregation patterns, combined with recent advances in technology have, however, facilitated a new breadth of studies revealing fresh insights into the biology and ecology of white sharks. Although we may no longer be able to refer to the white shark as a little-known, elusive species, there remain numerous key questions that warrant investigation and research focus. Although white sharks have separate populations, they seemingly share similar biological and ecological traits across their global distribution. Yet, white sharkâs behavior and migratory patterns can widely differ, which makes formalizing similarities across its distribution challenging. Prioritization of research questions is important to maximize limited resources because white sharks are naturally low in abundance and play important regulatory roles in the ecosystem. Here, we consulted 43 white shark experts to identify these issues. The questions listed and developed here provide a global road map for future research on white sharks to advance progress toward key goals that are informed by the needs of the research community and resource managers
The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)
1. Climate change is a worldâwide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soilâplantâatmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and highâquality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data reâuse, synthesis and upscaling. Many of these challenges relate to a lack of an established âbest practiceâ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change.
2. To overcome these challenges, we collected bestâpractice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data reâuse and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data reâuse, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate secondâorder research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world
Synthesis of 7,7 '-Linked-Bis-Indoles Via 7-Tryptamines
The synthesis of 7-tryptamines was accomplished via the reduction of 7-nitrovinylindoles which were developed by the condensation of indole-7-carbaldehydes with nitromethane and ammonium acetate. 7-Tryptamines were subsequently used for the construction of 2,3-disubstituted and 3 -substituted 7,7'-linked-bis-indoles.University of New South Wales; Turkish GovernmentTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK); New South Wales Government, National Collaborative Research Infrastructure StrategyAustralian GovernmentDepartment of Industry, Innovation and ScienceWe thank the University of New South Wales and the Turkish Government for their financial support. Mass spectrometric analysis for this work was carried out at the Bioanalytical Mass Spectrometry Facility, UNSW and was supported in part by infrastructure funding from the New South Wales Government as part of its coinvestment in the National Collaborative Research Infrastructure Strateg