4,225 research outputs found
Quantum Holographic Encoding in a Two-dimensional Electron Gas
The advent of bottom-up atomic manipulation heralded a new horizon for
attainable information density, as it allowed a bit of information to be
represented by a single atom. The discrete spacing between atoms in condensed
matter has thus set a rigid limit on the maximum possible information density.
While modern technologies are still far from this scale, all theoretical
downscaling of devices terminates at this spatial limit. Here, however, we
break this barrier with electronic quantum encoding scaled to subatomic
densities. We use atomic manipulation to first construct open
nanostructures--"molecular holograms"--which in turn concentrate information
into a medium free of lattice constraints: the quantum states of a
two-dimensional degenerate Fermi gas of electrons. The information embedded in
the holograms is transcoded at even smaller length scales into an atomically
uniform area of a copper surface, where it is densely projected into both two
spatial degrees of freedom and a third holographic dimension mapped to energy.
In analogy to optical volume holography, this requires precise amplitude and
phase engineering of electron wavefunctions to assemble pages of information
volumetrically. This data is read out by mapping the energy-resolved electron
density of states with a scanning tunnelling microscope. As the projection and
readout are both extremely near-field, and because we use native quantum states
rather than an external beam, we are not limited by lensing or collimation and
can create electronically projected objects with features as small as ~0.3 nm.
These techniques reach unprecedented densities exceeding 20 bits/nm2 and place
tens of bits into a single fermionic state.Comment: Published online 25 January 2009 in Nature Nanotechnology; 12 page
manuscript (including 4 figures) + 2 page supplement (including 1 figure);
supplementary movie available at http://mota.stanford.ed
Single-Atom Gating of Quantum State Superpositions
The ultimate miniaturization of electronic devices will likely require local
and coherent control of single electronic wavefunctions. Wavefunctions exist
within both physical real space and an abstract state space with a simple
geometric interpretation: this state space--or Hilbert space--is spanned by
mutually orthogonal state vectors corresponding to the quantized degrees of
freedom of the real-space system. Measurement of superpositions is akin to
accessing the direction of a vector in Hilbert space, determining an angle of
rotation equivalent to quantum phase. Here we show that an individual atom
inside a designed quantum corral can control this angle, producing arbitrary
coherent superpositions of spatial quantum states. Using scanning tunnelling
microscopy and nanostructures assembled atom-by-atom we demonstrate how single
spins and quantum mirages can be harnessed to image the superposition of two
electronic states. We also present a straightforward method to determine the
atom path enacting phase rotations between any desired state vectors. A single
atom thus becomes a real space handle for an abstract Hilbert space, providing
a simple technique for coherent quantum state manipulation at the spatial limit
of condensed matter.Comment: Published online 6 April 2008 in Nature Physics; 17 page manuscript
(including 4 figures) + 3 page supplement (including 2 figures);
supplementary movies available at http://mota.stanford.ed
Spatial Patterns and Sequential Sampling Plans for Estimating Densities of Stink Bugs (Hemiptera: Pentatomidae) in Soybean in the North Central Region of the United States
Stink bugs are an emerging threat to soybean (Fabales: Fabaceae) in the North Central Region of the United States. Consequently, region-specific scouting recommendations for stink bugs are needed. The aim of this study was to characterize the spatial pattern and to develop sampling plans to estimate stink bug population density in soybean fields. In 2016 and 2017, 125 fields distributed across nine states were sampled using sweep nets. Regression analyses were used to determine the effects of stink bug species [Chinavia hilaris (Say) (Hemiptera: Pentatomidae) and Euschistus spp. (Hemiptera: Pentatomidae)], life stages (nymphs and adults), and field locations (edge and interior) on spatial pattern as represented by variance–mean relationships. Results showed that stink bugs were aggregated. Sequential sampling plans were developed for each combination of species, life stage, and location and for all the data combined. Results for required sample size showed that an average of 40–42 sample units (sets of 25 sweeps) would be necessary to achieve a precision of 0.25 for stink bug densities commonly encountered across the region. However, based on the observed geographic gradient of stink bug densities, more practical sample sizes (5–10 sample units) may be sufficient in states in the southeastern part of the region, whereas impractical sample sizes (\u3e100 sample units) may be required in the northwestern part of the region. Our findings provide research-based sampling recommendations for estimating densities of these emerging pests in soybean
Recommended from our members
Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity.
Background: Hispanics living in the USA may have unrecognized potential birthplace and lifestyle influences on the gut microbiome. We report a cross-sectional analysis of 1674 participants from four centers of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), aged 18 to 74 years old at recruitment.Results: Amplicon sequencing of 16S rRNA gene V4 and fungal ITS1 fragments from self-collected stool samples indicate that the host microbiome is determined by sociodemographic and migration-related variables. Those who relocate from Latin America to the USA at an early age have reductions in Prevotella to Bacteroides ratios that persist across the life course. Shannon index of alpha diversity in fungi and bacteria is low in those who relocate to the USA in early life. In contrast, those who relocate to the USA during adulthood, over 45 years old, have high bacterial and fungal diversity and high Prevotella to Bacteroides ratios, compared to USA-born and childhood arrivals. Low bacterial diversity is associated in turn with obesity. Contrasting with prior studies, our study of the Latino population shows increasing Prevotella to Bacteroides ratio with greater obesity. Taxa within Acidaminococcus, Megasphaera, Ruminococcaceae, Coriobacteriaceae, Clostridiales, Christensenellaceae, YS2 (Cyanobacteria), and Victivallaceae are significantly associated with both obesity and earlier exposure to the USA, while Oscillospira and Anaerotruncus show paradoxical associations with both obesity and late-life introduction to the USA.Conclusions: Our analysis of the gut microbiome of Latinos demonstrates unique features that might be responsible for health disparities affecting Hispanics living in the USA
Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
Association between Serum IGF-I levels and Postoperative Delirium in Elderly Subjects Undergoing Elective Knee Arthroplasty.
Evidence is mixed for an association between serum insulin-like growth factor-I (IGF-I) levels and postoperative delirium (POD). The current study assessed preoperative serum IGF-I levels as a predictor of incident delirium in non-demented elderly elective knee arthroplasty patients. Preoperative serum levels of total IGF-I were measured using a commercially available Human IGF-I ELISA kit. POD incidence and severity were determined using DSM-IV criteria and the Delirium Rating Scale-Revised-98 (DRS-R98), respectively. Median IGF-I levels in delirious (62.6 ng/ml) and non-delirious groups (65.9 ng/ml) were not significantly different (p = 0.141). The ratio (95% CI) of geometric means, D/ND, was 0.86 (0.70, 1.06). The Hodges-Lehmann median difference estimate was 7.23 ng/mL with 95% confidence interval (−2.32, 19.9). In multivariate logistic regression analysis IGF-I level was not a significant predictor of incident POD after correcting for medical comorbidities. IGF-I levels did not correlate wit
Furfuryl Alcohol Emulsion Resins as Co-Binders for Urea-Formaldehyde Resin-Bonded Particleboards
An approach to using water-insoluble furfuryl alcohol (FA) resins as a co-binder for particleboard (PB) urea-formaldehyde (UF) resins was evaluated. Sprayable FA/UF mixed resins were made by emulsifying FA resins of varying advancements and mixing with various formaldehyde to urea (F/U) ratio UF resins in various proportions. The binder performance of the mixed FA/UF resins was then evaluated by bonding laboratory PBs using a weakly acidic ordinary UF resin curing catalyst at various hot pressing temperatures. The PBs were also heat-treated and were aged for two years at room temperature. The test results of bond strengths and formaldehyde emission levels of PBs showed promising improvements at about 30% FA resin additions, although the results were preliminary due to the variable performance nature of such binder systems
Chronic kidney disease and arrhythmias: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference.
Patients with chronic kidney disease (CKD) are predisposed to heart rhythm disorders, including atrial fibrillation (AF)/atrial flutter, supraventricular tachycardias, ventricular arrhythmias, and sudden cardiac death (SCD). While treatment options, including drug, device, and procedural therapies, are available, their use in the setting of CKD is complex and limited. Patients with CKD and end-stage kidney disease (ESKD) have historically been under-represented or excluded from randomized trials of arrhythmia treatment strategies,1 although this situation is changing.2 Cardiovascular society consensus documents have recently identified evidence gaps for treating patients with CKD and heart rhythm disorders [...
Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii
During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had phagocytosed the parasite, thus suggesting a role for these cells in priming naïve T cells. Indeed, dendritic cells were required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but not those that had phagocytosed the parasite) to naïve mice potently induced CD4+ and CD8+ T cell responses, and conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses
Principles of genetic circuit design
Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552
- …
