49 research outputs found
Positive interspecific associations consistent with social information use shape juvenile fish assemblages
Social information obtained from heterospecifics can enhance individual fitness by reducing environmental uncertainty, making it an important driver of mixed-species grouping behavior. Heterospecific groups are well documented among fishes, yet are notably more prevalent among juveniles than more advanced life stages, implying that the adaptive value of joining other species is greater during this developmental period. We propose this phenomenon can be explained by the heightened ecological relevance of heterospecifically produced cues pertaining to predation risk and or resources, as body-size uniformity inherent in early ontogeny yields greater overlap in predator and prey guild membership across juveniles of disparate taxa. To evaluate the putative role of information in shaping juvenile fish assemblages, we employed a joint species distribution model (JSDM), identifying nonrandom relationships among fishes collected in 785 seine hauls within the shallow littoral zones of a subtropical island. After accounting for species-environment relationships, which explained 39% of observed covariation in the abundance of 11 taxa, we detected high rates of positive association (84% of significant correlations) predominantly between mutual foraging guild members, consistent with assemblage patterns predicted to evolve under widespread interspecific information use. Affiliations occurred primarily between species characterized by neutral (i.e., noninteracting) or negative (i.e., predator-prey) relationships in later life stages, supporting the notion that heightened niche overlap due to body size homogeneity acted to increase the pertinence of information among juveniles. Taxa exerted varying degrees of influence on assemblage structure; however Eucinostomus spp., a gregarious generalist with exceptional information-production potential, had an effect several times that of all other species combined, further evidencing the likely role of information in motivating observed relationships. Co-occurrence and qualitative behavioral data inferred from remote underwater video surveys reinforced these conclusions. Collectively, these results suggest that positive interactions linked to information exchange can be among the principal factors organizing juvenile fish assemblages at local scales, highlighting the role of ontogeny in mediating the relevance and exploitation of information across speciesFunding from the Bonefish & Tarpon Trust, UMass Intercampus Marine Science
Graduate Program, and the Department of Environmental Conservation at the University of Massachusetts Amherst. A. Danylchuk was supported the National Institute of Food & Agriculture, U.S. Department of Agriculture, the Massachusetts Agricultural Experiment Station, and Department of Environmental Conservation and is also a Bonefish & Tarpon Trust Research Fellow
Hooking injury, physiological status and short-term mortality of juvenile lemon sharks (Negaprion bevirostris) following catch-and-release recreational angling
Sport fishing for sharks, including fishing with the intent to release, is becoming more prevalent within the recreational angling community. Common targ
RAC1(P29S) Induces a Mesenchymal Phenotypic Switch via Serum Response Factor to Promote Melanoma Development and Therapy Resistance
RAC1 P29 is the third most commonly mutated codon in human cutaneous melanoma, after BRAF V600 and NRAS Q61. Here, we study the role of RAC1P29S in melanoma development and reveal that RAC1P29S activates PAK, AKT, and a gene expression program initiated by the SRF/MRTF transcriptional pathway, which results in a melanocytic to mesenchymal phenotypic switch. Mice with ubiquitous expression of RAC1P29S from the endogenous locus develop lymphoma. When expressed only in melanocytes, RAC1P29S cooperates with oncogenic BRAF or with NF1-loss to promote tumorigenesis. RAC1P29S also drives resistance to BRAF inhibitors, which is reversed by SRF/MRTF inhibitors. These findings establish RAC1P29S as a promoter of melanoma initiation and mediator of therapy resistance, while identifying SRF/MRTF as a potential therapeutic target
Genomic insights into the origin of farming in the ancient Near East
We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 BC, from Natufian hunter–gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter–gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter–gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia
Ancient Plasmodium genomes shed light on the history of human malaria
Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia bce, respectively; for P. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the trans-Atlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.This project was funded by the National Science Foundation, grants BCS-2141896 and BCS-1528698; the European Research Council (ERC) under the European Union’s Horizon 2020 programme, grants 851511-MICROSCOPE (to S. Schiffels), 771234-PALEoRIDER (to W.H.) and starting grant 805268-CoDisEASe (to K.I.B.); and the ERC starting grant Waves ERC758967 (supporting K. Nägele and S.C.). We thank the Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean for supporting M. Michel, E. Skourtanioti, A.M., R.A.B., L.C.B., G.U.N., N.S., V.V.-M., M. McCormick, P.W.S., C.W. and J.K.; the Kone Foundation for supporting E.K.G. and A.S.; and the Faculty of Medicine and the Faculty of Biological and Environmental Sciences at the University of Helsinki for grants to E.K.G. A.S. thanks the Magnus Ehrnrooth Foundation, the Sigrid Jusélius Foundation, the Finnish Cultural Foundation, the Academy of Finland, the Life and Health Medical Foundation and the Finnish Society of Sciences and Letters. M.C.B. acknowledges funding from: research project PID2020-116196GB-I00 funded by MCIN/AEI/10.13039/501100011033; the Spanish Ministry of Culture; the Chiang Ching Kuo Foundation; Fundación Palarq; the EU FP7 Marie Curie Zukunftskolleg Incoming Fellowship Programme, University of Konstanz (grant 291784); STAR2-Santander Universidades and Ministry of Education, Culture and Sports; and CEI 2015 project Cantabria Campus Internacional. M.E. received support from the Czech Academy of Sciences award Praemium Academiae and project RVO 67985912 of the Institute of Archaeology of the Czech Academy of Sciences, Prague. This work has been funded within project PID2020-115956GB-I00 ‘Origen y conformación del Bronce Valenciano’, granted by the Ministry of Science and Innovation of the Government of Spain, and grants from the Canadian Institutes for Health Research (MZI187236), Research Nova Scotia (RNS 2023-2565) and The Center for Health Research in Developing Countries. D.K. is the Canada research chair in translational vaccinology and inflammation. R.L.K. acknowledges support from a 2019 University of Otago research grant (Human health and adaptation along Silk Roads, a bioarchaeological investigation of a medieval Uzbek cemetery). P.O. thanks the Jane and Aatos Erkko Foundation, the Finnish Cultural Foundation and the Academy of Finland. S. Peltola received support from the Emil Aaltonen Foundation and the Ella and Georg Ehrnrooth Foundation. D.C.S.-G. thanks the Generalitat Valenciana (CIDEGENT/2019/061). E.W.K. acknowledges support from the DEEPDEAD project, HERA-UP, CRP (15.055) and the Horizon 2020 programme (grant 649307). M. Spyrou thanks the Elite program for postdocs of the Baden-Württemberg Stiftung. Open access funding provided by Max Planck Society
Ontogenetic patterns in resource use dynamics of bonefish (Albula vulpes) in the Bahamas
We used stable isotope analysis to examine ontogenetic patterns in the resource use dynamics of bonefish (Albula vulpes) collected from two locations (Banks and Atlantic) within the coastal waters of Eleuthera, The Bahamas. A marked shift in δ13C signatures between leptocephali and juveniles reflected a rapid change in resource use, likely from pelagic to alternate neritic sources of primary production. Ontogenetic shifts in habitat use were observed across bonefish from both sides of Eleuthera, but direction of the isotopic shifts varied. Bonefish from the Atlantic side demonstrated an enrichment in 13C with size, whereas the opposite pattern was observed for individuals captured from the Banks. Differences are likely to be explained by the variability of primary production sources, which dominate each side of the island (i.e., more reliance on seagrass with ontogeny on the Atlantic side, versus a shift to macroalgal-dominated foodwebs with growth on the Banks side). Enrichment in 15N with body size was observed for bo
Altered Patterns of Compositional and Functional Disruption of the Gut Microbiota in Typhoid Fever and Nontyphoidal Febrile Illness
Abstract Background Experimental murine models and human challenge studies of Salmonella Typhi infection have suggested that the gut microbiome plays an important protective role against the development of typhoid fever. Anaerobic bacterial communities have been hypothesized to mediate colonization resistance against Salmonella species by producing short-chain fatty acids, yet the composition and function of the intestinal microbiota in human patients with typhoid fever remain ill defined. Methods We prospectively collected fecal samples from 60 febrile patients admitted to Chittagong Medical College Hospital, Bangladesh, with typhoid fever or nontyphoidal febrile illness and from 36 healthy age-matched controls. The collected fecal samples were subjected to 16s rRNA sequencing followed by targeted metabolomics analysis. Results Patients with typhoid fever displayed compositional and functional disruption of the gut microbiota compared with patients with nontyphoidal febrile illness and healthy controls. Specifically, typhoid fever patients had lower microbiota richness and alpha diversity and a higher prevalence of potentially pathogenic bacterial taxa. In addition, a lower abundance of short-chain fatty acid–producing taxa was seen in typhoid fever patients. The differences between typhoid fever and nontyphoidal febrile illness could not be explained by a loss of colonization resistance after antibiotic treatment, as antibiotic exposure in both groups was similar. Conclusions his first report on the composition and function of the gut microbiota in patients with typhoid fever suggests that the restoration of these intestinal commensal microorganisms could be targeted using adjunctive, preventive, or therapeutic strategies. </jats:sec