55 research outputs found

    Fully-automated root image analysis (faRIA)

    Get PDF
    High-throughput root phenotyping in the soil became an indispensable quantitative tool for the assessment of effects of climatic factors and molecular perturbation on plant root morphology, development and function. To efficiently analyse a large amount of structurally complex soil-root images advanced methods for automated image segmentation are required. Due to often unavoidable overlap between the intensity of fore- and background regions simple thresholding methods are, generally, not suitable for the segmentation of root regions. Higher-level cognitive models such as convolutional neural networks (CNN) provide capabilities for segmenting roots from heterogeneous and noisy background structures, however, they require a representative set of manually segmented (ground truth) images. Here, we present a GUI-based tool for fully automated quantitative analysis of root images using a pre-trained CNN model, which relies on an extension of the U-Net architecture. The developed CNN framework was designed to efficiently segment root structures of different size, shape and optical contrast using low budget hardware systems. The CNN model was trained on a set of 6465 masks derived from 182 manually segmented near-infrared (NIR) maize root images. Our experimental results show that the proposed approach achieves a Dice coefficient of 0.87 and outperforms existing tools (e.g., SegRoot) with Dice coefficient of 0.67 by application not only to NIR but also to other imaging modalities and plant species such as barley and arabidopsis soil-root images from LED-rhizotron and UV imaging systems, respectively. In summary, the developed software framework enables users to efficiently analyse soil-root images in an automated manner (i.e. without manual interaction with data and/or parameter tuning) providing quantitative plant scientists with a powerful analytical tool. © 2021, The Author(s)

    Delineating the structural, functional and evolutionary relationships of sucrose phosphate synthase gene family II in wheat and related grasses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sucrose phosphate synthase (SPS) is an important component of the plant sucrose biosynthesis pathway. In the monocotyledonous Poaceae, five <it>SPS </it>genes have been identified. Here we present a detailed analysis of the wheat <it>SPSII </it>family in wheat. A set of homoeologue-specific primers was developed in order to permit both the detection of sequence variation, and the dissection of the individual contribution of each homoeologue to the global expression of <it>SPSII</it>.</p> <p>Results</p> <p>The expression in bread wheat over the course of development of various sucrose biosynthesis genes monitored on an Affymetrix array showed that the <it>SPS </it>genes were regulated over time and space. <it>SPSII </it>homoeologue-specific assays were used to show that the three homoeologues contributed differentially to the global expression of <it>SPSII</it>. Genetic mapping placed the set of homoeoloci on the short arms of the homoeologous group 3 chromosomes. A resequencing of the A and B genome copies allowed the detection of four haplotypes at each locus. The 3B copy includes an unspliced intron. A comparison of the sequences of the wheat <it>SPSII </it>orthologues present in the diploid progenitors einkorn, goatgrass and <it>Triticum speltoides</it>, as well as in the more distantly related species barley, rice, sorghum and purple false brome demonstrated that intronic sequence was less well conserved than exonic. Comparative sequence and phylogenetic analysis of <it>SPSII </it>gene showed that false purple brome was more similar to <it>Triticeae </it>than to rice. Wheat - rice synteny was found to be perturbed at the SPS region.</p> <p>Conclusion</p> <p>The homoeologue-specific assays will be suitable to derive associations between SPS functionality and key phenotypic traits. The amplicon sequences derived from the homoeologue-specific primers are informative regarding the evolution of <it>SPSII </it>in a polyploid context.</p

    Методические указания к выполнению индивидуальных заданий практикума по дисциплине «Энергетический потенциал природных возобновляемых энергоресурсов и эффективность его преобразования в электроэнергию»

    Get PDF
    В методических указаниях рассмотрены вопросы оценки энергетического потенциала природных возобновляемых энергоресурсов: ветра, солнечного излучения и потоков воды и эффективности их преобразования в электроэнергию. Пособие предназначено для студентов дневного обучения по направлению13.04.02 «Электроэнергетика и электротехника» по профилям магистерской подготовки «Возобновляемые источники энергии» и «Оптимизация развивающихся систем электроснабжения»

    The adaptor molecule CARD9 is essential for tuberculosis control

    Get PDF
    The cross talk between host and pathogen starts with recognition of bacterial signatures through pattern recognition receptors (PRRs), which mobilize downstream signaling cascades. We investigated the role of the cytosolic adaptor caspase recruitment domain family, member 9 (CARD9) in tuberculosis. This adaptor was critical for full activation of innate immunity by converging signals downstream of multiple PRRs. Card9−/− mice succumbed early after aerosol infection, with higher mycobacterial burden, pyogranulomatous pneumonia, accelerated granulocyte recruitment, and higher abundance of proinflammatory cytokines and granulocyte colony-stimulating factor (G-CSF) in serum and lung. Neutralization of G-CSF and neutrophil depletion significantly prolonged survival, indicating that an exacerbated systemic inflammatory disease triggered lethality of Card9−/− mice. CARD9 deficiency had no apparent effect on T cell responses, but a marked impact on the hematopoietic compartment. Card9−/− granulocytes failed to produce IL-10 after Mycobaterium tuberculosis infection, suggesting that an absent antiinflammatory feedback loop accounted for granulocyte-dominated pathology, uncontrolled bacterial replication, and, ultimately, death of infected Card9−/− mice. Our data provide evidence that deregulated innate responses trigger excessive lung inflammation and demonstrate a pivotal role of CARD9 signaling in autonomous innate host defense against tuberculosis

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    <scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe

    Get PDF
    AbstractAimsWe introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.ResultsReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.ConclusionsReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.</jats:sec

    Blood Vessel Topography of the Feet in Selected Species of Birds of Prey and Owls

    No full text
    Birds of prey and owls are susceptible to diseases of and traumatic injuries to their feet, which regularly require surgical intervention. A precise knowledge of the blood vessel topography is essential for a targeted therapy. Therefore, the metatarsal and digital vasculature was examined in eight species of birds of prey and owls. The study included contrast micro-computed tomography scans and anatomical dissections after intravascular injection of colored latex. In all examined species, the dorsal metatarsal arteries provided the main supply to the foot and their branching pattern and number differed between species. They continued distally as digital arteries. All examined species showed a basic pattern of four collaterally located digital blood vessels per toe: a prominent artery and small vein on one side and a small artery and prominent vein on the other side. Digital veins united to form common digital veins, most of which joined into a superficial, medially located metatarsal vein. This vein provided the main drainage of the foot. The detailed visualization of the topography of pedal blood vessels will help veterinary surgeons during surgical procedures. In addition, differences in the plantar arterial arch between hawks and falcons were discussed regarding their possible influence on the prevalence of pododermatitis (bumblefoot)
    corecore