47 research outputs found

    The expansion of supermarkets and the establishment of delivery systems and intermediaries for fresh fruit and vegetables in the Global South – the case of Kenya and Tanzania

    Get PDF
    In the last three decades, supermarket chains from the countries of the Global North expanded in the Global South. The regions of interest were, in particular, those countries in which new market potentials resulted from economic development. There is also the trend that domestic supermarket chains are developing in the countries of the Global South. A number of studies in the Global South analyzes the impact on agricultural producers by incorporating them into delivery systems to supermarkets. However, little evidence exists yet on how the delivery systems are organized by intermediaries between agricultural producers and the supermarket chains in the Global South. Especially for fresh produce (vegetables, fruit) special challenges occur., e.g. concerning infrastructures This article will examine the relationship between the spatial and temporal expansion of supermarket chains and the establishment of delivery systems/intermediaries using the example of fresh produce in the countries of Kenya and Tanzania

    The Emotional Lockdown: How Social Distancing and Mask Wearing Influence Mood and Emotion Recognition in Adolescents and Adults

    Get PDF
    During the COVID-19 pandemic, government-mandated protection measures such as contact restrictions and mask wearing significantly affected social interactions. In the current preregistered studies we hypothesized that such measures could influence self-reported mood in adults and in adolescents between 12 and 13 years of age, who are in a critical phase of social development. We found that mood was positively related to face-to-face but not to virtual interactions in adults and that virtual interactions were associated with negative mood in adolescents. This suggests that contact restrictions leading to a decrease in face-to-face compared to virtual interactions may be related to negative mood. To understand if prolonged exposure to people wearing masks during the pandemic might be related to increased sensitivity for subtle visual cues to others’ emotions from the eye region of the face, we also presented both age groups with the same standardized emotion recognition test. We found slightly better performance in emotion recognition from the eyes in our student sample tested during the pandemic relative to a comparable sample tested prior to the pandemic although these differences were restricted to female participants. Adolescents were also better at classifying emotions from the eyes in the current study than in a pre-pandemic sample, with no gender effects occurring in this age group. In conclusion, while social distancing might have detrimental effects on self-reported mood, the ability to recognize others’ emotions from subtle visual cues around the eye region remained comparable or might have even improved during the COVID-19 pandemic

    Enhancing precision in human neuroscience

    Get PDF
    Human neuroscience has always been pushing the boundary of what is measurable. During the last decade, concerns about statistical power and replicability - in science in general, but also specifically in human neuroscience - have fueled an extensive debate. One important insight from this discourse is the need for larger samples, which naturally increases statistical power. An alternative is to increase the precision of measurements, which is the focus of this review. This option is often overlooked, even though statistical power benefits from increasing precision as much as from increasing sample size. Nonetheless, precision has always been at the heart of good scientific practice in human neuroscience, with researchers relying on lab traditions or rules of thumb to ensure sufficient precision for their studies. In this review, we encourage a more systematic approach to precision. We start by introducing measurement precision and its importance for well-powered studies in human neuroscience. Then, determinants for precision in a range of neuroscientific methods (MRI, M/EEG, EDA, Eye-Tracking, and Endocrinology) are elaborated. We end by discussing how a more systematic evaluation of precision and the application of respective insights can lead to an increase in reproducibility in human neuroscience

    Enhancing precision in human neuroscience

    Get PDF
    Human neuroscience has always been pushing the boundary of what is measurable. During the last decade, concerns about statistical power and replicability – in science in general, but also specifically in human neuroscience – have fueled an extensive debate. One important insight from this discourse is the need for larger samples, which naturally increases statistical power. An alternative is to increase the precision of measurements, which is the focus of this review. This option is often overlooked, even though statistical power benefits from increasing precision as much as from increasing sample size. Nonetheless, precision has always been at the heart of good scientific practice in human neuroscience, with researchers relying on lab traditions or rules of thumb to ensure sufficient precision for their studies. In this review, we encourage a more systematic approach to precision. We start by introducing measurement precision and its importance for well-powered studies in human neuroscience. Then, determinants for precision in a range of neuroscientific methods (MRI, M/EEG, EDA, Eye-Tracking, and Endocrinology) are elaborated. We end by discussing how a more systematic evaluation of precision and the application of respective insights can lead to an increase in reproducibility in human neuroscience

    The Replication Database:Documenting the Replicability of Psychological Science

    Get PDF
    In psychological science, replicability—repeating a study with a new sample achieving consistent results (Parsons et al., 2022)—is critical for affirming the validity of scientific findings. Despite its importance, replication efforts are few and far between in psychological science with many attempts failing to corroborate past findings. This scarcity, compounded by the difficulty in accessing replication data, jeopardizes the efficient allocation of research resources and impedes scientific advancement. Addressing this crucial gap, we present the Replication Database (https://forrt-replications.shinyapps.io/fred_explorer), a novel platform hosting 1,239 original findings paired with replication findings. The infrastructure of this database allows researchers to submit, access, and engage with replication findings. The database makes replications visible, easily findable via a graphical user interface, and tracks replication rates across various factors, such as publication year or journal. This will facilitate future efforts to evaluate the robustness of psychological research

    Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21.

    Get PDF
    Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10 -15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10 -9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10 -8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 ( NR5A2), chr8q24.21 ( MYC) and chr5p15.33 ( CLPTM1L- TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal ( n = 10) and tumor ( n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10 -8). This finding was validated in a second set of paired ( n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10 -4-2.0x10 -3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology

    Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer

    Get PDF
    We performed a multistage genome-wide association study including 7,683 individuals with pancreatic cancer and 14,397 controls of European descent. Four new loci reached genome-wide significance: rs6971499 at 7q32.3 (LINC-PINT, per-allele odds ratio (OR) = 0.79, 95% confidence interval (CI) 0.74-0.84, P = 3.0 x 10(-12)), rs7190458 at 16q23.1 (BCAR1/CTRB1/CTRB2, OR = 1.46, 95% CI 1.30-1.65, P = 1.1 x 10(-10)), rs9581943 at 13q12.2 (PDX1, OR = 1.15, 95% CI 1.10-1.20, P = 2.4 x 10(-9)) and rs16986825 at 22q12.1 (ZNRF3, OR = 1.18, 95% CI 1.12-1.25, P = 1.2 x 10(-8)). We identified an independent signal in exon 2 of TERT at the established region 5p15.33 (rs2736098, OR = 0.80, 95% CI 0.76-0.85, P = 9.8 x 10(-14)). We also identified a locus at 8q24.21 (rs1561927, P = 1.3 x 10(-7)) that approached genome-wide significance located 455 kb telomeric of PVT1. Our study identified multiple new susceptibility alleles for pancreatic cancer that are worthy of follow-up studies

    Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer

    Get PDF
    We performed a multistage genome-wide association study (GWAS) including 7,683 individuals with pancreatic cancer and 14,397 controls of European descent. Four new loci reached genome-wide significance: rs6971499 at 7q32.3 (LINC-PINT; per-allele odds ratio [OR] = 0.79; 95% confidence interval [CI] = 0.74–0.84; P = 3.0×10−12), rs7190458 at 16q23.1 (BCAR1/CTRB1/CTRB2; OR = 1.46; 95% CI = 1.30–1.65; P = 1.1×10−10), rs9581943 at 13q12.2 (PDX1; OR = 1.15; 95% CI = 1.10–1.20; P = 2.4×10−9), and rs16986825 at 22q12.1 (ZNRF3; OR = 1.18; 95% CI = 1.12–1.25; P = 1.2×10−8). An independent signal was identified in exon 2 of TERT at the established region 5p15.33 (rs2736098; OR = 0.80; 95% CI = 0.76–0.85; P = 9.8×10−14). We also identified a locus at 8q24.21 (rs1561927; P = 1.3×10−7) that approached genome-wide significance located 455 kb telomeric of PVT1. Our study has identified multiple new susceptibility alleles for pancreatic cancer worthy of follow-up studies
    corecore