41 research outputs found
Recommended from our members
Integrated crop pollination to buffer spatial and temporal variability in pollinator activity
Insect pollination improves the yield and quality of many crops, yet there is increasing evidence of insufficient insect pollinators limiting crop production. Effective Integrated Crop Pollination (ICP) involves adaptable, targeted and cost effective management of crop pollination and encourages the use of both wild and managed pollinators where appropriate. In this study we investigate how the
addition of honeybee hives affects the community of insects visiting oilseed rape, and if hive number and location affect pollinator foraging and oilseed rape pollination in order to provide evidence for effective ICP. We found that introducing hives increased overall flower visitor numbers and altered the pollinator community, which became dominated by honeybees. Furthermore a greater number of
hives did not increase bee numbers significantly but did result in honeybees foraging further into fields. The timing of surveys and proximity to the field edge influenced different pollinators in different ways and represents an example of spatial and temporal complementarity. For example dipteran flower visitor numbers declined away from the field edge whereas honeybees peaked at intermediate distances into the field. Furthermore, no significant effects of survey round on wild bees overall was observed but honeybee numbers were relatively lower during peak flowering and dipteran abundance was greater in later survey rounds. Thus combining diverse wild pollinators and managed species for
crop pollination buffers spatial and temporal variation in flower visitation. However we found no effect of insect pollination on seed set or yield of oilseed rape in our trial, highlighting the critical need to understand crop demand for insect pollination before investments are made in managing pollination services
The distribution and properties of DLAs at z 2 in the EAGLE simulations
Determining the spatial distribution and intrinsic physical properties of
neutral hydrogen on cosmological scales is one of the key goals of
next-generation radio surveys. We use the EAGLE galaxy formation simulations to
assess the properties of damped Lyman-alpha absorbers (DLAs) that are
associated with galaxies and their underlying dark matter haloes between 0
z 2. We find that the covering fraction of DLAs increases at
higher redshift; a significant fraction of neutral atomic hydrogen (HI) resides
in the outskirts of galaxies with stellar mass greater than or equal to
10 M; and the covering fraction of DLAs in the circumgalactic
medium (CGM) is enhanced relative to that of the interstellar medium (ISM) with
increasing halo mass. Moreover, we find that the mean density of the HI in
galaxies increases with increasing stellar mass, while the DLAs in high- and
low-halo-mass systems have higher column densities than those in galaxies with
intermediate halo masses (~ 10 M at z = 0). These high-impact
CGM DLAs in high-stellar-mass systems tend to be metal-poor, likely tracing
smooth accretion. Overall, our results point to the CGM playing an important
role in DLA studies at high redshift (z 1). However, their properties
are impacted both by numerical resolution and the detailed feedback
prescriptions employed in cosmological simulations, particularly that of AGN.Comment: 25 pages. Accepted for publication in MNRA
Targeted Inhibition of CYP11A1 in Castration-Resistant Prostate Cancer
Targeted Inhibition of CYP11A1 in Prostate CancerIn this single-arm, multicenter, combined phase 1 and phase 2 study, patients with metastatic prostate adenocarcinoma with progression on prior androgen receptor pathway inhibitors and taxane-based chemotherapy were treated with ODM-208. A decrease in prostate-specific antigen levels of 50% or more occurred in 16/42 (38.1%) and 24/45 (53.3%) in phase 1 and 2 respectively. Responses mainly occurred in patients with androgen receptor mutations. Adrenal insufficiency was the dose-limiting toxicity.</p
Recommended from our members
Protecting an ecosystem service: approaches to understanding and mitigating threats to wild insect pollinators
Insect pollination constitutes an ecosystem service of global importance, providing significant economic and aesthetic benefits as well as cultural value to human society, alongside vital ecological processes in terrestrial ecosystems. It is therefore important to understand how insect pollinator populations and communities respond to rapidly changing environments if we are to maintain healthy and effective pollinator services. This paper considers the importance of conserving pollinator diversity to maintain a suite of functional traits to provide a diverse set of pollinator services. We explore how we can better understand and mitigate the factors that threaten insect pollinator richness, placing our discussion within the context of populations in predominantly agricultural landscapes in addition to urban environments. We highlight a selection of important evidence gaps, with a number of complementary research steps that can be taken to better understand: i) the stability of pollinator communities in different landscapes in order to provide diverse pollinator services; ii) how we can study the drivers of population change to mitigate the effects and support stable sources of pollinator services; and, iii) how we can manage habitats in complex landscapes to support insect pollinators and provide sustainable pollinator services for the future. We advocate a collaborative effort to gain higher quality abundance data to understand the stability of pollinator populations and predict future trends. In addition, for effective mitigation strategies to be adopted, researchers need to conduct rigorous field-testing of outcomes under different landscape settings, acknowledge the needs of end-users when developing research proposals and consider effective methods of knowledge transfer to ensure effective uptake of actions
TheThreeHundred Project: ram pressure and gas content of haloes and subhaloes in the phase-space plane
We use THETHREEHUNDRED project, a suite of 324 resimulated massive galaxy clusters embedded in a broad range of environments, to investigate (i) how the gas content of the surrounding haloes correlates with the phase-space position at z z = 0 and (ii) the role that ram pressure plays in this correlation. By stacking all 324 normalized phase-space planes containing 169 287 haloes and subhaloes, we show that the halo gas content is tightly correlated with the phase-space position. At ∼1.5--2R 200 ∼1.5--2R200 of the cluster dark matter halo, we find an extremely steep decline in the halo gas content of infalling haloes and subhaloes irrespective of cluster mass, possibly indicating the presence of an accretion shock. We also find that subhaloes are particularly gas-poor, even in the cluster outskirts, which could indicate active regions of ongoing pre-processing. By modelling the instantaneous ram pressure experienced by each halo and subhalo at z z = 0, we show that the ram pressure intensity is also well correlated with the phase-space position, which is again irrespective of cluster mass. In fact, we show that regions in the phase-space plane with high differential velocity between a halo or subhalo and its local gas environment are almost mutually exclusive with high halo gas content regions. This suggests a causal link between the gas content of objects and the instantaneous ram pressure they experience, where the dominant factor is the differential velocity
Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies
LEARN: A multi-centre, cross-sectional evaluation of Urology teaching in UK medical schools
OBJECTIVE: To evaluate the status of UK undergraduate urology teaching against the British Association of Urological Surgeons (BAUS) Undergraduate Syllabus for Urology. Secondary objectives included evaluating the type and quantity of teaching provided, the reported performance rate of General Medical Council (GMC)-mandated urological procedures, and the proportion of undergraduates considering urology as a career. MATERIALS AND METHODS: LEARN was a national multicentre cross-sectional study. Year 2 to Year 5 medical students and FY1 doctors were invited to complete a survey between 3rd October and 20th December 2020, retrospectively assessing the urology teaching received to date. Results are reported according to the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). RESULTS: 7,063/8,346 (84.6%) responses from all 39 UK medical schools were included; 1,127/7,063 (16.0%) were from Foundation Year (FY) 1 doctors, who reported that the most frequently taught topics in undergraduate training were on urinary tract infection (96.5%), acute kidney injury (95.9%) and haematuria (94.4%). The most infrequently taught topics were male urinary incontinence (59.4%), male infertility (52.4%) and erectile dysfunction (43.8%). Male and female catheterisation on patients as undergraduates was performed by 92.1% and 73.0% of FY1 doctors respectively, and 16.9% had considered a career in urology. Theory based teaching was mainly prevalent in the early years of medical school, with clinical skills teaching, and clinical placements in the later years of medical school. 20.1% of FY1 doctors reported no undergraduate clinical attachment in urology. CONCLUSION: LEARN is the largest ever evaluation of undergraduate urology teaching. In the UK, teaching seemed satisfactory as evaluated by the BAUS undergraduate syllabus. However, many students report having no clinical attachments in Urology and some newly qualified doctors report never having inserted a catheter, which is a GMC mandated requirement. We recommend a greater emphasis on undergraduate clinical exposure to urology and stricter adherence to GMC mandated procedures