225 research outputs found
Sustaining Fairness via Incremental Learning
Machine learning systems are often deployed for making critical decisions
like credit lending, hiring, etc. While making decisions, such systems often
encode the user's demographic information (like gender, age) in their
intermediate representations. This can lead to decisions that are biased
towards specific demographics. Prior work has focused on debiasing intermediate
representations to ensure fair decisions. However, these approaches fail to
remain fair with changes in the task or demographic distribution. To ensure
fairness in the wild, it is important for a system to adapt to such changes as
it accesses new data in an incremental fashion. In this work, we propose to
address this issue by introducing the problem of learning fair representations
in an incremental learning setting. To this end, we present Fairness-aware
Incremental Representation Learning (FaIRL), a representation learning system
that can sustain fairness while incrementally learning new tasks. FaIRL is able
to achieve fairness and learn new tasks by controlling the rate-distortion
function of the learned representations. Our empirical evaluations show that
FaIRL is able to make fair decisions while achieving high performance on the
target task, outperforming several baselines.Comment: Accepted at AAAI 202
Robust Concept Erasure via Kernelized Rate-Distortion Maximization
Distributed representations provide a vector space that captures meaningful
relationships between data instances. The distributed nature of these
representations, however, entangles together multiple attributes or concepts of
data instances (e.g., the topic or sentiment of a text, characteristics of the
author (age, gender, etc), etc). Recent work has proposed the task of concept
erasure, in which rather than making a concept predictable, the goal is to
remove an attribute from distributed representations while retaining other
information from the original representation space as much as possible. In this
paper, we propose a new distance metric learning-based objective, the
Kernelized Rate-Distortion Maximizer (KRaM), for performing concept erasure.
KRaM fits a transformation of representations to match a specified distance
measure (defined by a labeled concept to erase) using a modified
rate-distortion function. Specifically, KRaM's objective function aims to make
instances with similar concept labels dissimilar in the learned representation
space while retaining other information. We find that optimizing KRaM
effectively erases various types of concepts: categorical, continuous, and
vector-valued variables from data representations across diverse domains. We
also provide a theoretical analysis of several properties of KRaM's objective.
To assess the quality of the learned representations, we propose an alignment
score to evaluate their similarity with the original representation space.
Additionally, we conduct experiments to showcase KRaM's efficacy in various
settings, from erasing binary gender variables in word embeddings to
vector-valued variables in GPT-3 representations.Comment: NeurIPS 202
Unsupervised Opinion Summarization Using Approximate Geodesics
Opinion summarization is the task of creating summaries capturing popular
opinions from user reviews. In this paper, we introduce Geodesic Summarizer
(GeoSumm), a novel system to perform unsupervised extractive opinion
summarization. GeoSumm involves an encoder-decoder based representation
learning model, that generates representations of text as a distribution over
latent semantic units. GeoSumm generates these representations by performing
dictionary learning over pre-trained text representations at multiple decoder
layers. We then use these representations to quantify the relevance of review
sentences using a novel approximate geodesic distance based scoring mechanism.
We use the relevance scores to identify popular opinions in order to compose
general and aspect-specific summaries. Our proposed model, GeoSumm, achieves
state-of-the-art performance on three opinion summarization datasets. We
perform additional experiments to analyze the functioning of our model and
showcase the generalization ability of {\X} across different domains.Comment: Findings of EMNLP 202
Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC
Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
- …