612 research outputs found

    An Examination of Resilience in Healthcare Information Systems in the Context of Natural Disasters

    Get PDF
    Contemporary healthcare information systems (HIS) rely heavily on IT/IS infrastructures to manage primary and essential services. Given that hospitals and HIS have been facing various disruptions from disasters, it is essential to take an integrative approach to help prepare effective coping strategies in disaster situations. To date, little is known about how HIS resilience is achieved. While Information Systems Assurance, IT Capability and Effective HIS use are important, the high degrees of HIS complexity and Interdependence of health information systems also have an impact on resilience. This study integrates a socio-technical perspective and theorizes the effect of disaster experience and influential factors for HIS resilience. HIS resilience will enable healthcare organizations to sustain the continuity of effective performance in terms of critical medical services in a disaster situation

    Analytical treatment of SUSY Quasi-normal modes in a non-rotating Schwarzschild black hole

    Full text link
    We use the Fock-Ivanenko formalism to obtain the Dirac equation which describes the interaction of a massless 1/2-spin neutral fermion with a gravitational field around a Schwarzschild black hole (BH). We obtain approximated analytical solutions for the eigenvalues of the energy (quasi-normal frequencies) and their corresponding eigenstates (quasi-normal states). The interesting result is that all the excited states [and their supersymmetric (SUSY) partners] have a purely imaginary frequency, which can be expressed in terms of the Hawking temperature. Furthermore, as one expects for SUSY Hamiltonians, the isolated bottom state has a real null energy eigenvalue.Comment: Version to be published in European Physical Journal

    On the interpretation of the equilibrium magnetization in the mixed state of high-Tc superconductors

    Full text link
    We apply a recently developed scaling procedure to the analysis of equilibrium magnetization M(H) data that were obtained for T-2212 and Bi-2212single crystals and were reported in the literature. The temperature dependencies of the upper critical field and the magnetic field penetration depth resulting from our analysis are distinctly different from those obtained in the original publications. We argue that theoretical models, which are usually employed for analyses of the equilibrium magnetization in the mixed state of type-II superconductors are not adequate for a quantitative description of high-Tc superconductors. In addition, we demonstrate that the scaled equilibrium magnetization M(H) curve for a Tl-2212 sample reveals a pronounced kink, suggesting a phase transition in the mixed state.Comment: 9 pages, 5figure

    Voronoi-Delaunay analysis of normal modes in a simple model glass

    Full text link
    We combine a conventional harmonic analysis of vibrations in a one-atomic model glass of soft spheres with a Voronoi-Delaunay geometrical analysis of the structure. ``Structure potentials'' (tetragonality, sphericity or perfectness) are introduced to describe the shape of the local atomic configurations (Delaunay simplices) as function of the atomic coordinates. Apart from the highest and lowest frequencies the amplitude weighted ``structure potential'' varies only little with frequency. The movement of atoms in soft modes causes transitions between different ``perfect'' realizations of local structure. As for the potential energy a dynamic matrix can be defined for the ``structure potential''. Its expectation value with respect to the vibrational modes increases nearly linearly with frequency and shows a clear indication of the boson peak. The structure eigenvectors of this dynamical matrix are strongly correlated to the vibrational ones. Four subgroups of modes can be distinguished

    Kinetic Turbulence

    Full text link
    The weak collisionality typical of turbulence in many diffuse astrophysical plasmas invalidates an MHD description of the turbulent dynamics, motivating the development of a more comprehensive theory of kinetic turbulence. In particular, a kinetic approach is essential for the investigation of the physical mechanisms responsible for the dissipation of astrophysical turbulence and the resulting heating of the plasma. This chapter reviews the limitations of MHD turbulence theory and explains how kinetic considerations may be incorporated to obtain a kinetic theory for astrophysical plasma turbulence. Key questions about the nature of kinetic turbulence that drive current research efforts are identified. A comprehensive model of the kinetic turbulent cascade is presented, with a detailed discussion of each component of the model and a review of supporting and conflicting theoretical, numerical, and observational evidence.Comment: 31 pages, 3 figures, 99 references, Chapter 6 in A. Lazarian et al. (eds.), Magnetic Fields in Diffuse Media, Astrophysics and Space Science Library 407, Springer-Verlag Berlin Heidelberg (2015

    Three-term recurrence relations for systems of Clifford algebra-valued orthogonal polynomials

    Get PDF
    Recently, systems of Clifford algebra-valued orthogonal polynomials have been studied from different points of view. We prove in this paper that for their building blocks there exist some three-term recurrence relations, similar to that for orthogonal polynomials of one real variable. As a surprising byproduct of own interest we found out that the whole construction process of Clifford algebra-valued orthogonal polynomials via Gelfand-Tsetlin basis or otherwise relies only on one and the same basic Appell sequence of polynomials.This work was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications of the University of Aveiro, the CMAT - Research Centre of Mathematics of the University of Minho and the FCT - Portuguese Foundation for Science and Technology (“Fundação para a Ciˆencia e a Tecnologia”), within projects PEst-OE/MAT/UI4106/2014 and PEst-OE/MAT/UI0013/2014.info:eu-repo/semantics/publishedVersio

    Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    Full text link
    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, including the situations when turbulent reconnection is self-driven, i.e. the turbulence in the system is generated by the reconnection process itself. We show how turbulent reconnection entails the violation of magnetic flux freezing, the conclusion that has really far reaching consequences for many realistically turbulent astrophysical environments. In addition, we consider observational testing of turbulent reconnection as well as numerous implications of the theory. The former includes the Sun and solar wind reconnection, while the latter include the process of reconnection diffusion induced by turbulent reconnection, the acceleration of energetic particles, bursts of turbulent reconnection related to black hole sources as well as gamma ray bursts. Finally, we explain why turbulent reconnection cannot be explained by turbulent resistivity or derived through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection - Concepts and Applications", editors W. Gonzalez, E. N. Parke

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
    • …
    corecore