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Abstract. Recently, systems of Clifford algebra-valued orthogonal poly-
nomials have been studied from different points of view. We prove in
this paper that for their building blocks there exist some three-term
recurrence relations, similar to that for orthogonal polynomials of one
real variable. As a surprising byproduct of own interest we found out
that the whole construction process of Clifford algebra-valued orthog-
onal polynomials via Gelfand-Tsetlin basis or otherwise relies only on
one and the same basic Appell sequence of polynomials.
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1. Introduction

During the last decade, orthonormal polynomial systems in the space of
square integrable monogenic Clifford algebra-valued functions in the unit
ball of Rn+1 have been constructed by different methods. In particular, we
mention [6–8, 13, 15]), where for practical applications the case n = 2 was
studied in great detail, by different approaches and from different points of
view.
In [3], the authors succeeded to find a system of Appell sequences as orthog-
onal basis. Their construction method relied on monogenic primitivation and
its connection to orthogonality gave their results particular relevance. The
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paper [25] confirmed these results from a representation theoretical point of
view and in the joint work [4] the reader can find a more general and ex-
tensive explanation including the role of Gelfand-Tsetlin bases for spherical
monogenics in dimension 3. This work was generalized in [26] for the case of
spherical monogenics in any dimension.
A matrix approach to paravector valued Appell sequences can also advanta-
geously be used, as it was shown in [11]. As one of its application a matrix
recurrence for the paravector valued building blocks of those Gelfand-Tsetlin
bases can be found in [12].
A central question like the construction of generating functions for spherical
harmonics and spherical monogenics was answered in the paper [16]. Another
central problem, well known from the general theory of orthogonal polyno-
mials, is the existence of three-term recurrence relations. In [11], Theorem 6
proved such a three-term recurrence relation for a special Appell sequence of
homogeneous monogenic polynomials. As continuation of these investigations
we aim to derive here an analogue for the system of Clifford algebra-valued
orthogonal polynomials obtained as result of the Gelfand-Tsetlin theory.
In this paper we give new insights on the reformulation of the construction
process [26] of the general orthogonal Gelfand-Tsetlin bases with respect to
the Dirac operator, based on the use of a generalized Cauchy-Riemann oper-
ator, which has been recently proposed in [12]. In this last work, the readers
can find details about the common aspects and the differences of each ap-
proach.
The paper is structured as follows. Section 2 contains the fundamental con-
cepts of monogenic function theory used through the paper. Section 3 pro-
vides the reader with some facts about the origin of the system of Clifford
algebra-valued orthogonal polynomials that we will study. Therefore it refers
results of [26] and [12]. Before coming to the main part of the paper, the
second subsection serves to prove (as a byproduct of the chosen represen-
tation by Gegenbauer polynomials) a formula that allows an interpretation
as a generalized De Moivre’s formula in R3. Section 4 shows the existence
of three-term recurrence relations for hypercomplex orthogonal polynomials
and, as straightforward consequences, that orthogonal polynomials can also
be obtained as solutions of second order differential equations. Furthermore
their construction by an operational approach is shown. All the obtained
results are in a rather surprisingly way connected through the application
of a so-called Standard Appell Sequence. Final remarks refer to differences
in the existing approaches to Clifford algebra-valued orthogonal polynomi-
als, namely the analytical approach that we follow and the representation
theoretical approach of other authors.

2. Basics of hypercomplex function theory

We recall some necessary basic notations and definitions following mainly
[12]. Like all approaches to multivariate polynomial sequences by methods
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of Hypercomplex Function Theory, the present one relies on the following
facts (see e. g. [5, 24]). Let {e1, e2, . . . , en} be an orthonormal basis of the
Euclidean vector space Rn with a non-commutative product according to the
multiplication rules

ekel + elek = −2δkl, k, l = 1, . . . , n,

where δkl is the Kronecker symbol. The set {eA : A ⊆ {1, . . . , n}} with

eA = eh1
eh2
· · · ehr

, 1 ≤ h1 < · · · < hr ≤ n, e∅ = e0 = 1,

forms a basis of the 2n-dimensional Clifford algebra C`0,n over R. The main
involution in C`0,n, the conjugation, is defined by

ēA = ēhr
ēhr−1

· · · ēh1
,

where ēhj
= −ehj

, j = 1, . . . , r. Let Rn+1 be embedded in C`0,n by identifying

(x0, x1, . . . , xn) ∈ Rn+1 with

x = x0 + x ∈ An := spanR{1, e1, . . . , en} ⊂ C`0,n.

Here, x0 = Sc(x) and x = Vec(x) = e1x1 + · · · + enxn are the scalar and
vector parts of the so-called paravector x ∈ An. The conjugate of x is given
by x̄ = x0 − x and its norm by |x| = (xx̄)

1
2 = (x20 + x21 + · · ·+ x2n)

1
2 .

We pay attention to its relation to the complex Wirtinger derivatives,
by using the following notation for a generalized Cauchy-Riemann operator
in Rn+1, n ≥ 1,

∂ :=
1

2
(∂0 + ∂x)

and its conjugate

∂ :=
1

2
(∂0 − ∂x)

with

∂0 :=
∂

∂x0
and ∂x := e1

∂

∂x1
+ · · ·+ en

∂

∂xn
.

As usual, C 1-functions f satisfying a generalized Cauchy-Riemann equa-
tion in its hypercomplex form given by

∂f = 0

(resp. f∂ = 0), are called left monogenic (resp. right monogenic). We suppose
that f is hypercomplex-differentiable in Ω in the sense of [23, 27], that is, it
has a uniquely defined areolar derivative f ′ in each point of Ω (see also
[28]). Then, f is real-differentiable and f ′ can be expressed by the conjugate
generalized Cauchy-Riemann operator as f ′ = ∂f . Since a hypercomplex
differentiable function belongs to the kernel of ∂, it follows that, in fact,
f ′ = ∂0f = −∂xf which is similar to the complex case.

Functions defined in some open subset Ω ⊂ Rn+1 with values in the
Clifford algebra C`0,n are of the form f(z) =

∑
A fA(z)eA, with real valued

fA(z). As usual, we denote by Mk(Rn+1, C`0,n) the space of homogeneous
monogenic polynomials of degree k with values in C`0,n.
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We use the classical definition of sequences of Appell polynomials [1]
adapted to the hypercomplex case.

Definition 2.1. A sequence of homogeneous monogenic polynomials
(
F (k)

)
k≥0

of exact degree k is called a generalized Appell sequence with respect to ∂ if

1. F (0)(x) ≡ 1,
2. ∂F (k) = kF (k−1), k = 1, 2, . . .

The second condition, sometimes mentioned as Appell property, is the
essential one while the first condition is the usually applied normalization
condition which can be changed to any real or hypercomplex constant dif-
ferent from zero or even to a monogenic constant (cf. [30]). As already used
in [3,14,15] a monogenic constant is a monogenic function whose hypercom-
plex derivative is zero. In dimension three (n = 2) a generalized constant is
isomorphic to an anti-holomorphic complex function (cf. [3] or [14]).

Due to our main goal of establishing three-term recurrence relations for
Clifford algebra-valued orthogonal polynomials, we need the Clifford algebra-
valued inner product

(f, g)C`0,n =

∫
Bn+1

f̄ g dλn+1, (2.1)

where λn+1 is the Lebesgue measure in Rn+1 and ā the conjugate of a ∈ C`0,n.

3. A Clifford algebra-valued orthogonal system

3.1. Cauchy-Kovalevskaya extension of normalized polynomials and the spe-
cial case of Standard Appell Polynomials

The importance and central role of homogeneous monogenic polynomials,
their different representations, properties and applications, are already mani-
fest in the book [5], but chapter III of its sequel [20] is particularly dedicated
to this question. Therein the authors constructed the Cauchy-Kovalevskaya
extension of the vector-valued polynomials

xk−j Pj(x), j = 0, . . . , k,

for arbitrarily fixed Pj ∈ Mj(Rn, C`0,n), n ≥ 2, leading to monogenic para-
vector-valued polynomials Pk(x0, x) of degree k in Rn+1.

For our goal and as was already done in [12], we will continue to work
with the Cauchy-Kovalevskaya extension of the normalized polynomials

ck,j(n)

(
k

j

)
xk−j Pj(x),

where ck,j(n), for k ≥ 1 and j = 0, . . . , k are defined by

ck,j(n) :=


(k − j)!!(n+ 2j − 2)!!

(n+ k + j − 1)!!
, if k, j have different parities

ck−1,j(n), if k, j have the same parity

(3.1)

and c0,0(n) := 1.
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The choice of the normalized polynomials allows in the following some
simplification and better accordance between different formulas.

As a result of the Cauchy-Kovalevskaya extension described in [20], we

obtain for each k ∈ N and j = 0, . . . , k, a monogenic polynomial X̃
(k)
n+1,j of

degree k and index j as a product of a, in general, non-monogenic polynomial

of degree1 (k − j), denoted by X
(k−j)
n+1,j , with Pj(x). More explicitly,

X̃
(k)
n+1,j(x) := X

(k−j)
n+1,j(x)Pj(x), x ∈ An, (3.2)

where, as mentioned before, Pj ∈Mj(Rn, C`0,n) and

X
(k−j)
n+1,j(x) = F

(k−j)
n+1,j (x) +

j + 1

n+ 2j
F

(k−j−1)
n+1,j+1 (x)x. (3.3)

Here,

F
(k−j)
n+1,j (x) =

(j + 1)k−j
(n− 1 + 2j)k−j

|x|k−jC
n−1
2 +j

k−j

(
x0
|x|

)
,

with F
(−1)
n+1,k+1 ≡ 0, x = (x0, . . . , xn) ∈ Rn+1, | . | is the usual Euclidean norm

in Rn+1, (µ)m = µ(µ+ 1)(µ+ 2) . . . (µ+m− 1), and Cνm is the Gegenbauer
polynomial of degree m and parameter ν 6= 0, given by

Cνm(t) = (2ν)m

bm/2c∑
l=0

(
1
2

)
l
tm−2l(t2 − 1)l

(2l)!(m− 2l)!
(
ν + 1

2

)
l

. (3.4)

Remark 3.1. It follows from the construction that the value of the index
j of each obtained polynomial X̃

(k)
n+1,j is ranging from 0 to the degree of

homogeneity k. For j > k, we consider that X̃
(k)
n+1,j ≡ 0, as usual.

As already mentioned in the introduction, the homogeneous monogenic

polynomials X̃
(k)
n+1,j (j = 0, . . . , k) are orthogonal with respect to the Clifford-

valued inner product (2.1). Moreover, for each fixed j (j = 0, . . . , k) they form
an Appell sequence, i.e.,

∂X̃
(k)
n+1,j(x) = k X̃

(k−1)
n+1,j (x), x ∈ An, k ≥ 1,

as a consequence of

∂x0
X

(k−j)
n+1,j(x) = (k − j) X(k−1−j)

n+1,j (x), x ∈ An, k ≥ 1, (3.5)

(see [12] for details).
The standard choice of 1 as the constant P0 in (3.2) according to the

classical definition of Appell sequences leads to X̃
(k)
n+1,0 ≡ X

(k)
n+1,0 ≡ Pnk for

all k ∈ N0 and j = 0, where Pnk is the monogenic polynomial of degree k,
constructed in [21] and represented by

Pnk (x) =

k∑
s=0

(
k

s

)
cs(n)xk−s0 xs. (3.6)

1Due to the introduction of a second index j, the degree of a polynomial is written as
upper index, except in appropriately identified cases.
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Here cs(n) = cs,0(n) (s = 0, . . . , k) are given by (3.1). More explicitly,

cs(n) = cs,0(n) =

{ s!!(n−2)!!
(n+s−1)!! , if s is odd

cs−1,0(n), if s is even
(3.7)

and c0(n) = 1. For convenience, in [19] the (Pnk )k≥0 has been called Stan-

dard Appell Sequence compared with other types of hypercomplex Appell
sequences considered therein. As we will show in the sequel, the coefficients
(3.7) of the Pnk are dominating the construction process of the system of
Clifford algebra-valued orthogonal polynomials, thereby justifying the spe-
cial role of (Pnk )k≥0 as some kind of a standard Appell sequence.

Remark 3.2. It is also worth to notice that the process of construction of
the polynomials (3.2) is valid for n ≥ 2. However the polynomials (3.6) are
also defined for n = 1 and in this case they are isomorphic to the holomor-
phic powers zk , with z = x0 + e1 x1 ∈ A1 ' C. In fact, cs(1) = 1, for all
s = 0, . . . , k and

P1
k =

k∑
s=0

(
k

s

)
xk−s0 xs = (x0 + e1 x1)k.

3.2. The generalized De Moivre’s formula

Before dealing with three-term recurrences, the main goal of this paper, we
will have a closer look to the monogenic polynomials (3.2) and study them
in detail in the case of the lowest dimension n = 2, i.e. the first non-complex
case. We also focus our attention only on the index j = 0 and the choice

of P0 = 1. As we have seen X̃
(k)
3,0 ≡ X

(k)
3,0 ≡ P2

k and therefore these poly-

nomials represent the generalization of the holomorphic powers zk to higher
dimensions.

For the case n = 2, x ∈ A2 ' R3 and A2 ⊂ C`0,2. The Clifford algebra
C`0,2 is 4-dimensional with basis {1, e1, e2, e12} and can be identified with
the Hamilton’s quaternion algebra H, with

e1 ' i, e2 ' j, e12 ' k.
In this context, the paravectors x = x0 + x1 e1 + x2 e2 ∈ A2 are usually

also called reduced quaternions.
We start by recalling the representation stated in [12] of the Clifford-

valued homogeneous polynomials (3.3), X
(k−j)
n+1,j (j = 0, . . . , k), namely

X
(k−j)
n+1,j(t,ω)=Ank,j |x|k−j

[
(k + j + n− 1) + ω

√
1− t2 d

dt

]
C

n−1
2 +j

k−j (t), (3.8)

where

Ank,j :=
k!

j!(n− 1 + 2j)k+1−j
, t :=

x0
|x|
∈ [−1, 1] and ω :=

x

|x|
∈ Sn−1.

For j = 0 and n = 2 this expression becomes

X
(k)
3,0 (t,ω) = P2

k(t,ω) = |x|k 1

k + 1

[
k + 1 + ω

√
1− t2 d

dt

]
C

1/2
k (t).
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As it is well-known, C
1/2
k coincides with the Legendre polynomial Lk

and
√

1− t2 d
dtLk(t) = L1

k(t), being L1
k the associated Legendre function of

degree k and order 1. Thus

P2
k(t,ω) = |x|k 1

k + 1

[
(k + 1)Lk(t) + ωL1

k(t)
]
.

Introducing spherical coordinates, we have x = |x| (cos θ + ω sin θ) (θ ∈
[0, π[) with ω = cosϕ e1 + sinϕ e2 ∈ S2 (ϕ ∈ [0, 2π[). It follows that

P2
k(t,ω) = |x|k 1

k + 1

[
(k + 1)Lk(cos θ) + ωL1

k(cos θ)
]
. (3.9)

Notice that for quaternions q = q0+q1i+q2j+q3k, qs ∈ R (s = 0, 1, 2, 3),
the De Moivre’s formula is given by

qk = |q|k [cos (kθ) + ω sin (kθ)] ,

when q = |q| (cos θ + ω sin θ), being ω ∈ S2 (see [18]). However the powers
qk (k ∈ N) are not, in general, monogenic.

Despite their coefficients are different, the structure of the trigonometric
polynomials Lk(cos θ) and L1

k(cos θ) is exactly the same as the polynomials
cos (kθ) and sin (kθ), respectively for each k ∈ N. In this way, we can interpret
the formula (3.9) as the analogue of the De Moivre’s formula for the reduced

quaternionic monogenic powers X̃
(k)
3,0 ≡ X

(k)
3,0 ≡ P2

k (k ∈ N).

4. Three-term recurrence relations and related properties

4.1. The structural Appell sequence

As we have seen in subsection 2.1, the Cauchy-Kovalevskaya extension of nor-
malized polynomials includes the special case of Standard Appell Polynomials
Pnk obtained for arbitrary k ≥ 1 and j = 0 from ck(n)xk P0(x) = ck(n)xk.
But in the general case of 0 < j ≤ k the essential contribution to the Cauchy-

Kovalevskaya extension of normalized polynomials is the factor X
(k−j)
n+1,j(x)

defining the structure of X̃
(k)
n+1,j (cf. (3.2)). The surprising relation of the

structural Appell sequence
(
X

(k−j)
n+1,j

)
k≥0 with respect to ∂x0

(cf. (3.5)), with

the Standard Appell Polynomials Pnk is the subject of the next theorem. That
connection is described by shifting their coefficients, one shift decreases the
degree k by j whereas the other increases the number n in the expression
of the coefficients ck(n) by 2j. This means that here the parameter n of the
coefficient ck(n) in Pnk is untied from its connection with the number n of
components in the vector part x of x = x0 + x.

The described situation is the content of the following theorem.

Theorem 4.1. For all k ∈ N0 and each fixed j (j = 0, . . . , k), it holds

X
(k−j)
n+1,j(x) =

(
k

j

)
Pn+2j
k−j (x), x ∈ An.
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Proof. From its explicit expression (3.6), it follows

Pn+2j
k−j (x) =

b k−j
2 c∑
s=0

(−1)s
(
k − j

2s

)
c2s(n+ 2j)xk−j−2s0 |x|2s

+

b k−j−1
2 c∑
s=0

(−1)s
(
k − j
2s+ 1

)
c2s+1(n+ 2j)xk−j−2s−10 |x|2s x.

Introducing the real variable t :=
x0
|x|

and ω ∈ Sn−1, already used in (3.8),

we obtain

Pn+2j
k−j (t,ω) = |x|k−j

b k−j
2 c∑
s=0

(−1)s
(
k − j

2s

)
c2s(n+ 2j) tk−j−2s(1− t2)s

+ ω
√

1− t2
b k−j−1

2 c∑
s=0

(−1)s
(
k − j
2s+ 1

)
c2s+1(n+ 2j)tk−j−2s−1(1− t2)s

 .
Defining ν := n−1

2 + j, the coefficients (3.7) can also be written in the
form

c2s (2ν + 1) = c2s−1 (2ν + 1) =

(
1
2

)
s(

ν + 1
2

)
s

.

Therefore, writing m := k − j, we obtain after some simplifications

P2ν+1
m (t,ω) =|x|mm!

bm2 c∑
s=0

(
1
2

)
s
tm−2s(t2 − 1)s

(2s)!(m− 2s)!
(
ν + 1

2

)
s

+ ω
√

1− t2
bm−1

2 c∑
s=0

(
1
2

)
s
tm−2s−1(t2 − 1)s

(2s)!(m− 2s− 1)!
(
ν + 3

2

)
s

(2ν + 1)

 .
Recalling now the explicit formula (3.4) for the Gegenbauer polynomials,

we have

P2ν+1
m (t,ω) = |x|mm!

[
Cνm(t)

(2ν)m
+ ω

√
1− t2

Cν+1
m−1(t)

(2ν + 1)m

]
and the result follows from the well-known property d

dtC
ν
m(t) = 2νCν+1

m−1(t)

and the representation (3.8) of the polynomials X
(m)
n+1,j (j = 0, . . . , k).

�

Using the relation stated in the previous theorem, we can rewrite the

homogeneous polynomials X
(k−j)
n+1,j in terms of the variables x0 and x as

X
(k−j)
n+1,j(x0, x) =

(
k

j

) k−j∑
s=0

(
k − j
s

)
cs(n+ 2j)xk−j−s0 xs, x ∈ An.



Three-term recurrence 9

4.2. A three-term type recurrence

Using the results of the previous subsections, which emphasized the role of
Standard Appel Sequence (Pnk )k≥0 as a unique tool for the construction of

all X̃
(k)
n+1,j , we are now able to prove another important general property of

hypercomplex orthogonal polynomials, namely the existence of three-term
recurrence relations. One should be aware that the obtained three-term re-
currence is a relation between homogeneous polynomials and therefore their
structure is slightly different from the usual one. Nevertheless, it seems to us
rightful to call them at least three-term type recurrence.

As we know from the real or complex case, according to Favards the-
orem (cf. [17, 22]) a three-term relation essentially characterizes the orthog-
onality of polynomials. Again, the starting point for the characterization of
all elements of the considered systems of Clifford algebra-valued orthogonal
polynomials by the validity of those three-term recurrence relations will be
the corresponding property of the Standard Appel Sequence (Pnk )k≥0 .

The An-valued monogenic Appell polynomials Pnj , here defined by (3.6)
admit a variety of different representations and, even more, they satisfy the
following recurrence relation (see [11]):

(n+k+1)Pnk+2(x)−((2k+n+2)x0+x)Pnk+1(x)+(k+1)|x|2Pnk (x) = 0, (4.1)

Pn0 (x) = 1, Pn1 (x) = x0 +
1

n
x, x ∈ An. (4.2)

This relation together with Theorem 4.1 allow to deduce a three-term
type recurrence for the paravector valued polynomials (3.8), which in turn
can be used to obtain in Subsection 4.3 several properties of the monogenic

polynomials X̃
(k)
n+1,j defined in (3.2).

Theorem 4.2. For all k ∈ N0 and each fixed j (j = 0, . . . , k), the paravector-

valued polynomials X
(k−j)
n+1,j(x), x ∈ An, satisfy the three-term type recurrence

(n+ k + 1 + j)(k + 2− j)X(k+2−j)
n+1,j − [(n+ 2k + 2)x0 + x] (k + 2)X

(k+1−j)
n+1,j

+ (k + 2)(k + 1) |x|2X(k−j)
n+1,j = 0, (4.3)

X
(0)
n+1,j = 1, X

(1)
n+1,j = (j + 1)

(
x0 +

1

n+ 2j
x
)
. (4.4)

Proof. From the recurrence (4.1)-(4.2), it follows at once that for all x ∈ An,
all k ∈ N0 and each fixed j (j = 0, . . . , k),

(n+ j + k + 1)Pn+2j
k−j+2(x)− ((2k + n+ 2)x0 + x)Pn+2j

k−j+1(x)

+ (k − j + 1)|x|2Pn+2j
k−j (x) = 0.

Pn+2j
0 (x) = 1, Pn+2j

1 (x) = x0 +
1

n+ 2j
x.

Using now Theorem 4.1 the result follows immediately. �
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Corollary 4.3. For all k ∈ N0 and each fixed j (j = 0, . . . , k), the monogenic

polynomials X̃
(k)
n+1,j(x), x ∈ An satisfy the three-term type recurrence

(n+ k + 1 + j)(k + 2− j)X̃(k+2)
n+1,j − [(n+ 2k + 2)x0 + x] (k + 2)X̃

(k+1)
n+1,j

+ (k + 2)(k + 1) |x|2 X̃(k)
n+1,j = 0, (4.5)

X̃
(j)
n+1,j = Pj(x), X̃

(j+1)
n+1,j = (j + 1)(x0 +

1

n+ 2j
x)Pj(x). (4.6)

Proof. The result follows from the multiplication of the relations (4.3) and
(4.4) by an arbitrary chosen monogenic constant, i. e. by Pj ∈Mj(Rn, C`0,n),
for some fixed j (j = 0, . . . , k), with k ∈ N0. �

Figure 1 illustrates the recursive construction procedure of X̃
(k)
n+1,j in

terms of the Standard Appell polynomials with shifted coefficients.

4.3. A second order differential equation

Three-term relations can be considered as some type of difference equations as
it is pointed out in the work [22] on numerical problems connected with three-
term relations. This makes it easy to understand why orthogonal polynomials
can also be obtained as solutions of second order differential equations. Like in
the real case the proof of this fact is straightforward but, for instance in [2], it
is shown that the characterization of orthogonal polynomials by second order
differential equations can lead to far reaching generalizations of orthogonal
polynomials. Such argument seems to us sufficient to ask for the validity of a
corresponding second order differential equation for Clifford algebra-valued
orthogonal polynomials. This issue is addressed in the following theorem.

Theorem 4.4. For all k ∈ N0 and each fixed j (j = 0, . . . , k), the monogenic

polynomials X̃
(k)
n+1,j(x), x ∈ An, satisfy the second order differential equation

|x|2∂2y(x)− ((n+ 2k − 2)x0 + x)∂y(x)

+ (n+ k + j − 1)(k − j)y(x) = 0. (4.7)

Proof. The result follows from Corollary 4.3 and the fact that the polynomials

X̃
(k)
n+1,j (k ∈ N0, j = 0, . . . , k) form an Appell system.

�

Remark 4.5. The second-order differential equation (4.7) characterizes the in-
ner structure of any family of monogenic Appell polynomials. In fact, consider

a family
{
F (k)
j : j = 0, . . . , k

}
of monogenic Appell polynomials of degree k

(k ∈ N0) which are solutions of the differential equation (4.7). For each fixed

j, (j = 0, . . . k) the Appell property of the polynomials F (k)
j implies at once

that they satisfy a three-term type recurrence of the form (4.5).
Observe that when k = j the third term in (4.7) vanishes as well as the

first and second order hypercomplex derivatives of F (j)
j (cf. Remark 3.1) and

therefore, (4.7) being trivially satisfied, does not reveal any new information
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about the Appell family. On the other hand, when k = j + 1, the differential

equation together with the Appell property applied to F (j+1)
j gives again a

vanishing first term. The result is the expression of F (j+1)
j by F (j)

j in the
form

F (j+1)
j = (j + 1)(x0 +

1

n+ 2j
x)F (j)

j . (4.8)

The choice of the polynomial F (j)
j = Pj(x) ∈ Mj(Rn, C`0,n) in (4.8) corre-

sponds to (4.6) and determines the structure of the Appell polynomials under
consideration.

It is also worth to notice that the case j = 0 corresponds to the choice
of an ordinary real or Clifford algebra-valued constant as an initial value. In

particular, the choice of F (0)
0 = 1 leads to the Standard Appell Polynomials

Pnk , revisited in Section 3.1. On the other hand, the choice of an arbitrary
fixed vector-valued polynomial Pj(x) in (4.8) corresponds to the choice of a
monogenic constant as initial value, taking into account the role of ∂ as the
hypercomplex derivative of a monogenic function. This perspective coincides
completely with the result obtained in the paper [30] for the construction of
monogenic Appell sequences having a monogenic constant as initial value.

4.4. Ladder operators

Ladder operators for the sequence
{
X̃

(k)
n+1,j : j = 0, . . . , k

}
k∈N0

can now be

obtained in an easy way. It is clear that the Appell property of the poly-

nomials X̃
(k)
n+1,j (j = 0, . . . , k) gives naturally a lower operator for that se-

quence. A raising operator can be obtained using the so-called Euler operator

E :=
n∑
i=0

xi
∂
∂xi

in Rn+1. Any homogeneous function is an eigenfunction of this

operator and therefore it appears frequently in the context of homogeneous
polynomials. The Euler operator played also a crucial role in the papers [9,10]
where monogenic Laguerre polynomials and Laguerre-type exponential func-
tions were constructed.

Theorem 4.6. For all k ∈ N0 and each fixed j (j = 0, . . . , k), the operators

M̂ := E
[
(2E + n− 2)x0 + x− |x|2∂

]
and P̂ := ∂ are such that

M̂X̃
(k)
n+1,j = (n+ k + j)(k + 1− j)X̃(k+1)

n+1,j (4.9)

P̂ X̃
(k)
n+1,j = k X̃

(k−1)
n+1,j . (4.10)

Proof. The second identity follows from the fact that the considered polyno-
mials form an Appell system, for each fixed j (j = 0, . . . , k) and k ≥ 1. The
first identity is easily obtained taking into account (4.5)-(4.6) (see also Re-
mark 3.1), the Appell property and the homogeneity of the polynomials. �

Theorem 4.7. For all k ∈ N0 and each fixed j (j = 0, . . . , k), the monogenic

polynomials X̃
(k)
n+1,j are eigenvectors of the operator M̂P̂ with eigenvalues

αnk,j := k(n+ k + j − 1)(k − j).
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Proof. Follows immediately from identities (4.9)-(4.10). �

5. Final remarks

The theory of orthogonal polynomials in one or several real or complex vari-
ables is well known and has a wide range of applications for solving mathe-
matical and physical problems. At the first glance, their importance seems to
be based on their analytical properties, particularly because of their role in
almost all aspects of approximation theory. But subject of intensive research
are also their algebraic properties which lay behind the treatment of Clifford
algebra-valued orthogonal polynomials by representation theoretical methods
as we mentioned in the introduction.

In the present paper we tried to put emphasis on general analytical
aspects like three-term recurrence relations, the characterization as solutions
of differential equations and the construction by an operational approach. As
far as we know, contrary to frequent studies on generalized types of classical
orthogonal polynomials, those general properties have not been studied so
far in the context of hypercomplex homogeneous polynomial.
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Birkhäuser Basel (1981), 173–181.

[3] S. Bock and K. Gürlebeck, On a Generalized Appell System and Monogenic
Power Series. Math. Methods Appl. Sci. 33 no. 4 (2010), 394–411.
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Figure 1. X̃
(k)
n+1,j - Recursive construction scheme


