102 research outputs found

    An Extremely Uncommon Case of Parasitic Infection Presenting as Eosinophilic Ascites in a Young Patient

    Get PDF
    We report the case of a 24-year-old male patient admitted for recent ascites and splenomegaly of unknown origin. The patient was referred to our institution with complaints of diarrhea, epigastric pain, abdominal cramping and weight loss over the past three weeks. The acute onset presented with colicky abdominal pain and peritoneal effusion. History revealed reduced appetite and weight gain of 7 kg over the last one month. His past medical history and family history was negative. He had no history of alcohol abuse or viral hepatitis infection. Laboratory data revealed normal transaminases and bilirubin levels, and alkaline phosphatase and gammaglutamyltransferase were within normal range. A diagnostic laparoscopy was performed which showed free peritoneal fluid and normal abdominal viscera. Upper gastrointestinal system endoscopy performed a few days later revealed diffuse severe erythematous pangastritis and gastroduodenal gastric reflux. Duodenal biopsies showed chronic nonspecific duodenitis. Antrum and corpus biopsies showed chronic gastritis. The ascitic fluid was straw-colored and sterile with 80% eosinophils. Stool exam was negative for parasitic infection. Treatment with albendazole 400 mg twice daily for 5 days led to the disappearance of ascites and other signs and symptoms. Three months after albendazole treatment the eosinophilic cell count was normal. The final diagnosis was consistent with parasitic infection while the clinical, sonographic and histological findings suggested an eosinophilic ascites. We emphasize the importance of excluding parasitic infection in all patients with eosinophilic ascites. We chose an alternative way (albendazole treatment) to resolve this clinical picture. With our alternative way for excluding this parasitic infection, we treated the patient and then found the cause

    A New Strategy for Identification of Highly Conserved microRNAs in Non-Model Insect, Spodoptera litura

    Get PDF
    The indigenous small non-coding RNAs, known as microRNAs (miRNAs), are important regulators of gene expression and many of them are evolutionarily conserved. Whether stem-loop RT-PCR, as a sensitive method, could be utilized to clone conserved miRNAs from non-model insects lacks information. Here, three miRNAs, sli-miR-14, sli-miR-2a and sli-bantam, were cloned from Spodoptera litura by stem-loop RT-PCR. Two groups of primers were designed, and one of them performed especially well and proved stable. The sequences of two highly conserved miRNAs, sli-miR-14 and sli-miR-2a were identical to those in Drosophila melanogaster. To validate the reliability of this strategy, pre-miR-14 and pre-miR-2a in S. litura as representatives were given as well; this shared high homology with those in D. melanogaster and Bombyx mori, and both mature sequences of sli-miR-14 and sli-miR-2a in their precursors shared 100% identity to the results shown by stem-loop RT-PCR. Moreover, expression patterns of these miRNAs were investigated by real-time quantitative PCR. Sli-miR-14 and sli-miR-2a could be detected successfully and their expression patterns showed similar characteristics with those in model insects, further suggesting stem-loop RT-PCR technology can be used for identification of highly conserved miRNAs in non-model insects. These results provide a simplified and efficient strategy for studying the structure and function of highly conserved miRNAs, especially some critical miRNAs in non-model insects

    Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    Get PDF
    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin.This study was financially supported by GrapeGen Project funded by Genoma España within a collaborative agreement with Genome Canada. The authors also thank The Ministerio de Ciencia e Innovacion for project BIO2008-03892 and a bilateral collaborative grant with Argentina (AR2009-0021). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects

    Get PDF
    Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics

    miRNAs as Biomarkers and Therapeutic Targets in Non-Small Cell Lung Cancer: Current Perspectives

    Get PDF

    Fragmentation and kinematics in high-mass star formation: CORE-extension targeting two very young high-mass star-forming regions

    Get PDF
    Context: The formation of high-mass star-forming regions from their parental gas cloud and the subsequent fragmentation processes lie at the heart of star formation research. Aims: We aim to study the dynamical and fragmentation properties at very early evolutionary stages of high-mass star formation. Methods: Employing the NOrthern Extended Millimeter Array (NOEMA) and the IRAM 30m telescope, we observed two young high-mass star-forming regions, ISOSS22478 and ISOSS23053, in the 1.3mm continuum and spectral line emission at a high angular resolution (~0.8''). Results: We resolved 29 cores that are mostly located along filament-like structures. Depending on the temperature assumption, these cores follow a mass-size relation of approximately M~r^2.0, corresponding to constant mean column densities. However, with different temperature assumptions, a steeper mass-size relation up to M~r^3.0, which would be more likely to correspond to constant mean volume densities, cannot be ruled out. The correlation of the core masses with their nearest neighbor separations is consistent with thermal Jeans fragmentation. We found hardly any core separations at the spatial resolution limit, indicating that the data resolve the large-scale fragmentation well. Although the kinematics of the two regions appear very different at first sight - multiple velocity components along filaments in ISOSS22478 versus a steep velocity gradient of more than 50km/s/pc in ISOSS23053 - the findings can be explained within the framework of a dynamical cloud collapse scenario. Conclusions: While our data are consistent with a dynamical cloud collapse scenario and subsequent thermal Jeans fragmentation, the importance of additional environmental properties, such as the magnetization of the gas or external shocks triggering converging gas flows, is nonetheless not as well constrained and would require future investigation

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Identification of an Epithelial-Specific Enhancer Regulating \u3ci\u3eESX\u3c/i\u3e Expression

    Get PDF
    The Ets transcription factor, ESX, exhibits a unique pattern of epithelial-restricted expression and transactivates genes involved in epithelial differentiation and cancer. The aim of this study was to determine the underlying genetic basis for epithelial-specific expression of ESX. We have identified a 30bp ESX enhancer sequence (EES) approximately 3 kb upstream of the proximal promoter. This region displays enhancer activity in an epithelial-specific manner and deletion of this region abrogates ESX gene transcription. An EES binding protein complex (EBC) was identified through electrophoretic mobility shift assays whose degree of EES binding correlated well with endogenous ESX levels in epithelial cells and was regulated by epithelial differentiation. Understanding the regulation of this element will lend insight into mechanisms of epithelial differentiation and the etiology of breast cancer and may provide novel targets for cancer therapeutic intervention
    corecore