215 research outputs found

    A New Sign Distance-Based Ranking Method for Fuzzy Numbers

    Get PDF
    In this paper, a new sign distance-based ranking method for fuzzy numbers is proposed. It is a synthesis of geometric centroid and sign distance. The use of centroid and sign distance in fuzzy ranking is not new. Most existing methods (e.g., distance-based method [9]) adopt the Euclidean distance from the origin to the centroid of a fuzzy number. In this paper, a fuzzy number is treated as a polygon, in which a new geometric centroid for the fuzzy number is proposed. Since a fuzzy number can be represented in different shapes with different spreads, a new dispersion coefficient pertaining to a fuzzy number is formulated. The dispersion coefficient is used to fine-tune the geometric centroid, and subsequently sign distance from the origin to the tuned geometric centroid is considered. As discussed in [5-9], an ideal fuzzy ranking method needs to satisfy seven reasonable fuzzy ordering properties. As a result, the capability of the proposed method in fulfilling these properties is analyzed and discussed. Positive experimental results are obtained

    Characterization of elastic scattering near a Feshbach resonance in rubidium 87

    Full text link
    The s-wave scattering length for elastic collisions between 87Rb atoms in the state |f,m_f>=|1,1> is measured in the vicinity of a Feshbach resonance near 1007 G. Experimentally, the scattering length is determined from the mean-field driven expansion of a Bose-Einstein condensate in a homogeneous magnetic field. The scattering length is measured as a function of the magnetic field and agrees with the theoretical expectation. The position and the width of the resonance are determined to be 1007.40 G and 0.20 G, respectively.Comment: 4 pages, 2 figures minor revisions: added Ref.6, included error bar

    Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes

    Get PDF
    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming

    Fermionic superfluidity: From high Tc superconductors to ultracold Fermi gases

    Full text link
    We present a pairing fluctuation theory which self-consistently incorporates finite momentum pair excitations in the context of BCS--Bose-Einstein condensation (BEC) crossover, and we apply this theory to high TcT_c superconductors and ultracold Fermi gases. There are strong similarities between Fermi gases in the unitary regime and high Tc superconductors. Here we address key issues of common interest, especially the pseudogap. In the Fermi gases we summarize recent experiments including various phase diagrams (with and without population imbalance), as well as evidence for a pseudogap in thermodynamic and other experiments.Comment: Expanded version, invited talk at the 5th International Conference on Complex Matter -- Stripes 2006, 6 pages, 6 figure

    Short-lived Nuclei in the Early Solar System: Possible AGB Sources

    Get PDF
    (Abridged) We review abundances of short-lived nuclides in the early solar system (ESS) and the methods used to determine them. We compare them to the inventory for a uniform galactic production model. Within a factor of two, observed abundances of several isotopes are compatible with this model. I-129 is an exception, with an ESS inventory much lower than expected. The isotopes Pd-107, Fe-60, Ca-41, Cl-36, Al-26, and Be-10 require late addition to the solar nebula. Be-10 is the product of particle irradiation of the solar system as probably is Cl-36. Late injection by a supernova (SN) cannot be responsible for most short-lived nuclei without excessively producing Mn-53; it can be the source of Mn-53 and maybe Fe-60. If a late SN is responsible for these two nuclei, it still cannot make Pd-107 and other isotopes. We emphasize an AGB star as a source of nuclei, including Fe-60 and explore this possibility with new stellar models. A dilution factor of about 4e-3 gives reasonable amounts of many nuclei. We discuss the role of irradiation for Al-26, Cl-36 and Ca-41. Conflict between scenarios is emphasized as well as the absence of a global interpretation for the existing data. Abundances of actinides indicate a quiescent interval of about 1e8 years for actinide group production in order to explain the data on Pu-244 and new bounds on Cm-247. This interval is not compatible with Hf-182 data, so a separate type of r-process is needed for at least the actinides, distinct from the two types previously identified. The apparent coincidence of the I-129 and trans-actinide time scales suggests that the last actinide contribution was from an r-process that produced actinides without fission recycling so that the yields at Ba and below were governed by fission.Comment: 92 pages, 14 figure files, in press at Nuclear Physics

    Selexipag treatment for pulmonary arterial hypertension associated with congenital heart disease after defect correction: insights from the randomised controlled GRIPHON study.

    Get PDF
    Patients with pulmonary arterial hypertension associated with congenital heart disease (CHD-PAH) after defect correction have a poor prognosis compared with other CHD-PAH patients. Therefore, it is important that these patients are treated as early and effectively as possible. Evidence supporting the use of PAH therapies in patients with corrected CHD-PAH from randomised controlled trials is limited. The purpose of these analyses was to characterise the corrected CHD-PAH patients from the GRIPHON study and examine the response to selexipag. Out of the 110 patients diagnosed with corrected CHD-PAH, 55 had atrial septal defects, 38 had ventricular septal defects, 14 had persistent ducti arteriosus, and 3 had defects not further specified. Hazard ratios (HR) and 95% confidence intervals (CI) for the primary composite endpoint were calculated using Cox proportional hazard models. Compared with the non-CHD patients from GRIPHON, patients with corrected CHD-PAH were slightly younger, with a greater proportion being treatment-naive and in World Health Organization functional class I/II. The rate of the primary composite endpoint of morbidity/mortality was lower in patients with corrected CHD-PAH who were treated with selexipag compared with those treated with placebo (HR 0.58; 95% CI 0.25, 1.37). The most common adverse events were those known to be related to selexipag. These post-hoc analyses of GRIPHON provide valuable information about a large population of patients with corrected CHD-PAH, and suggest that selexipag may delay disease progression and was well-tolerated in patients with corrected CHD-PAH

    Quantum Rotation of HCN and DCN in Helium-4

    Full text link
    We present calculations of rotational absorption spectra of the molecules HCN and DCN in superfluid helium-4, using a combination of the Diffusion Monte Carlo method for ground state properties and an analytic many-body method (Correlated Basis Function theory) for the excited states. Our results agree with the experimentally determined effective moment of inertia which has been obtained from the J=01J=0\to 1 spectral transition. The correlated basis function analysis shows that, unlike heavy rotors such as OCS, the J=2 and higher rotational excitations of HCN and DCN have high enough energy to strongly couple to rotons, leading to large shifts of the lines and accordingly to anomalous large spectroscopic distortion constants, to the emergence of roton-maxon bands, and to secondary peaks in the absorption spectra for J=2 and J=3.Comment: accepted by Phys. Rev. B; changes: included referee suggestions, removed typos, added 10 ref

    Thermodynamic Measurements in a Strongly Interacting Fermi Gas

    Full text link
    We conduct a series of measurements on the thermodynamic properties of an optically-trapped strongly interacting Fermi gas, including the energy EE, entropy SS, and sound velocity cc. Our model-independent measurements of EE and SS enable a precision study of the finite temperature thermodynamics. The E(S)E(S) data are directly compared to several recent predictions. The temperature in both the superfluid and normal fluid regime is obtained from the fundamental thermodynamic relation T=E/ST=\partial E/\partial S by parameterizing the E(S)E(S) data. Our E(S)E(S) data are also used to experimentally calibrate the endpoint temperatures obtained for adiabatic sweeps of the magnetic field between the ideal and strongly interacting regimes. This enables the first experimental calibration of the temperature scale used in experiments on fermionic pair condensation. Our calibration shows that the ideal gas temperature measured for the onset of pair condensation corresponds closely to the critical temperature estimated in the strongly interacting regime from the fits to our E(S)E(S) data. The results are in very good agreement with recent predictions. Finally, using universal thermodynamic relations, we estimate the chemical potential and heat capacity of the trapped gas from the E(S)E(S) data.Comment: 29 pages, 12 figures. To appear in JLTP online, and in the January, 2009 volum

    Orbital Observations of Dust Lofted by Daytime Convective Turbulence

    Get PDF
    Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called “dust devils”. On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet’s atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects
    corecore