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Abstract:  34 

Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols 35 

as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided 36 

an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of 37 

dust in modulating atmospheric processes is complex and not always well understood. We present a review of 38 

orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures 39 

produced by daytime convective turbulence called “dust devils”. On Earth, dust devils are thought to contribute 40 

only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their 41 

occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the 42 

planet’s atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust 43 

devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that 44 

martian dust devil studies may inform future studies of convectively-lofted dust on Earth. 45 

As on Earth, martian dust devils form most commonly when the insolation reaches its daily and seasonal peak and 46 

where a source of loose dust is plentiful. However this pattern is modulated by variations in weather, albedo, or 47 

topography, which produce turbulence that can either enhance or suppress dust devil formation. For reasons not 48 

well understood, when measured from orbit, martian dust devil characteristics (dimensions, and translational and 49 

rotational speeds) are often much larger than those measured from the ground on both Earth and Mars. Studies 50 

connecting orbital observations to those from the surface are needed to bridge this gap in understanding. Martian 51 

dust devils have been used to remotely probe conditions in the PBL (e.g., CBL depth, wind velocity); the same 52 

could be done in remote locations on Earth. Finally, martian dust devils appear to play a major role in the dust 53 

cycle, waxing and waning in relative importance and spatial patterns of occurrence with the planet’s orbital state. 54 

Orbital studies of terrestrial dust devils would provide a basis for comparative planetology that would broaden the 55 

understanding of these dusty vortices on both planets. 56 

 57 

 58 

Keywords: Atmospheric dust; dust devil; Mars; dust storm; boundary layer 59 

Abbreviations: ADEOS: Advanced Earth Observing Satellite; AOT: aerosol optical thickness; ASTER: Advanced 60 

Spaceborne Thermal Emission Spectrometer; AVHRR: Advanced Very 61 

High Resolution Radiometer; CALIOP: Cloud-Aerosol Lidar with 62 

Orthogonal Polarization; CALIPSO: Cloud-Aerosol Lidar and Infrared 63 

Pathfinder Satellite Observations; CBL: convective boundary layer; 64 

CTX: Context Camera; DD: dust devil; DOD: dust optical depth; DOT: 65 

dust optical thickness; EPF: emission phase function; EY: Earth year; 66 

FOV: field of view; GCM: global circulation model; GLAS: Geoscience 67 

Laser Altimeter System; GLI: Global Imager; GOCART: Goddard 68 

Chemistry Aerosol Radiation and Transport; HiRISE: High Resolution 69 

Imaging Science Experiment; HRSC: High Resolution Stereo Camera; 70 

ICESat: Ice, Cloud and land Elevation Satellite; IR: infrared; IRIS: 71 

Infrared Interferometric Spectrometer; IRTM: Infrared Thermal 72 
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Mapper; LITE: Lidar In-Space Technology Experiment; LW: long 73 

wave; MARCI: Mars Reconnaissance Orbiter Mars Color Imager; MCS: 74 

Mars Climate Sounder; MEX: Mars Express; MGS: Mars Global 75 

Surveyor; MOC NA: Mars Orbiter Camera Narrow Angle; MOC WA: 76 

Mars Orbiter Camera Wide Angle; MODIS: Moderate-resolution 77 

Imaging Spectro-radiometer; MOLA: Mars Orbiter Laser Altimeter; 78 

MRO: Mars Reconnaissance Orbiter; MSG: Meteosat Second 79 

Generation; MSL: Mars Science Laboratory; Multi-angle Imaging 80 

Spectro-Radiometer; MY: Mars Year; MVIRI: Meteosat Visible Infra-81 

Red Imager; NOAA: National Oceanic and Atmospheric 82 

Administration; ODY: Mars Odyssey; PBL: planetary boundary layer; 83 

POLDER: Polarization and Directionality of the Earth’s Reflectances; 84 

PSD: particle size distribution; SeaWiFS: Sea-viewing Wide Field of 85 

view Sensor; SRC: Super-resolution Camera; SEVIRI: Spinning 86 

Enhanced Visible Infra-Red Imager; SPICAM: Spectroscopy for 87 

Investigation of Characteristics of the Atmosphere of Mars; SW: short 88 

wave; TES: Thermal Emission Spectrometer; THEMIS IR: Thermal 89 

Emission Imaging System, Infrared camera; THEMIS VIS: THEMIS 90 

Visible camera; TIROS: Television and Infra-Red Observation Satellite; 91 

UV: ultraviolet; VCS-MA: Vidicon Camera System – Medium Angle; 92 

VIS: TOMS: Total Ozone Mapping Spectrometer; Visual Imaging 93 

Subsystems; VL1: Viking Lander 1; VL2; Viking Lander 2; VO1: 94 

Viking Orbiter 1; VO2: Viking Orbiter 2 95 

96 
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1 Introduction 97 

Spaceborne observations of lofted dust began with the first weather satellites in the 1960s (see  98 

Figure 1a). Until recently, most such phenomena have been associated with dust hazes and 99 

smog that have been transported far from their source regions (e.g., United States 1964), but 100 

new data have highlighted a complex interplay between dust emission and daytime dry 101 

convective turbulence in the planetary boundary layer. The CBL is composed of structured 102 

turbulent eddies, containing tens-of-meter-scale vortices that form most commonly in narrow 103 

updrafts at the intersections of three or more kilometer-scale convection cells (e.g., Willis and 104 

Deardorff 1979; Hess and Spillane 1990; Kanak et al. 2000). When dust-laden, these vortices 105 

become visible to the eye as dust devils (DDs). Non-rotating gusts may also entrain dust, likely 106 

occurring most commonly along upwelling sheets where two convection cells meet. For a 107 

detailed review of the meteorological context of convectively-lofted dust, we refer the reader to 108 

Chapters 5 and 7 of this volume.  109 

 110 

On Earth, the amount of dust lofted by daytime convective turbulence, mainly by DDs, was 111 

first estimated by Koch and Renno (2005) to be ~0.7 Tg/year, or 34 ± 19% of the global 112 

terrestrial mineral dust budget. Jemmett-Smith et al. (2015) revised this estimate down to only 113 

~3.4% of the global terrestrial mineral dust budget by refining estimates of the temporal and 114 

spatial occurrence of dust entrainment. Although small, this input could be significant on a 115 

regional scale (e.g., Gillette and Sinclair 1990; Jemmett-Smith et al. 2015), with potentially 116 

significant environmental consequences and hazards (Goudie and Middleton 2006). DDs have 117 

not yet been identified in images obtained from terrestrial satellites, although the tracks they 118 

sweep out on the surface have been studied (see Sec. 3.1 and Chapter 4). The continued 119 

monitoring of such features from orbital platforms opens new avenues of research that, 120 

informed by the extensive studies performed on Mars, could prove to be of use to the field of 121 

terrestrial climate science. 122 

 123 

Dust on Mars has long been known from Earth-based telescopic observations; Martin and 124 

Zurek (1993) summarized observations of “yellow clouds” dating as far back as 1873. These 125 

phenomena were correctly attributed to lofted dust, but the determining details of their 126 

formation, development, and dissipation required a closer inspection from orbiting spacecraft. 127 

The best first look at martian dust from space is that from Mariner 9, which entered orbit 128 
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around Mars in November 1971, in the midst of one of the most intense planet-encircling dust 129 

storms on record (see  130 

Figure 1b). Features related to dust entrained by sub-kilometer-scale daytime convective 131 

turbulence, such as DDs, were not expected to be resolved in images from 1970s-era spacecraft; 132 

as a result they were only identified many years later after careful inspection of these data sets 133 

(Thomas and Gierasch 1985).  134 

 135 

We present a review of atmospheric dust research from orbital spacecraft, both on Earth and 136 

Mars, with a particular emphasis on DDs. This chapter is complementary to a review of field 137 

measurements, which can be found in Chapter 2. We first summarize the orbital platforms used 138 

and the observed spatial and temporal patterns of dust lifting and transport, in part to provide a 139 

context for the DD studies, but also because instrument capabilities dictate what may be learned 140 

from the data sets they produce. We then describe the current body of literature on orbital 141 

observations of martian DDs, including regional and global surveys, spatial and temporal 142 

patterns of their occurrence, physical characteristics, their relation to the martian dust cycle, and 143 

the potential role of convectively-lofted dust as a climate forcing mechanism (a more detailed 144 

discussion of how dust lofted by DDs relates to the climate system can be found in Chapter 11). 145 

The conclusions begin with a comparison of global mean estimates of dust load, the 146 

contribution contributed by DDs, and the DOT, providing a high-level comparison of the 147 

quantity of atmospheric dust on Earth and Mars. This is followed by a summary of the major 148 

knowledge gaps that could be addressed with use of orbital data. In particular, we emphasize 149 

that, although observations of terrestrial DDs from space have yet to be reported, the extensive 150 

surveys and detailed investigations from Mars suggest that similar work on Earth could be quite 151 

informative. 152 

 153 

The martian year is 668.6 sols (martian days) long, nearly twice as long as that of the Earth. An 154 

annual “calendar” for Mars is denoted by the solar longitude, or Ls, in which the year begins at 155 

the northern vernal equinox (Ls = 0º) and circumscribes its orbit around the sun over the 156 

following 360º (i.e., northern summer solstice occurs at Ls = 90º, autumnal equinox occurs at Ls 157 

= 180º, and northern winter solstice occurs at Ls = 270º). Mars years (MY) are numbered 158 

beginning with MY 1 on 11 April, 1955, following the convention of Clancy et al. (2000); a 159 

convenient tool for converting Earth dates to Martian dates can be found at http://www-160 

mars.lmd.jussieu.fr/mars/time/martian_time.html. Because the martian sol is 24 hours, 39 161 

minutes, and ~35.2 seconds long, the convention is to divide the day into 24 “hours” that are 162 
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~3698.7 seconds in duration. Lacking oceans, Mars has no equivalent elevation for sea level, so 163 

the topographic datum is defined as the equipotential surface at the mean equatorial radius 164 

(3396.2 km), which is located at a pressure level of ~520 Pa at Ls = 0º (Smith et al. 2001).  165 

2 Orbital Measurements of Lofted Dust 166 

2.1 Earth 167 

2.1.1 Aerosols on Earth 168 

Compared to Mars, sources of atmospheric particulate matter (aerosols) are numerous on the 169 

Earth. Primary aerosols, directly emitted as particles, are distinguished from secondary 170 

aerosols, resulting from chemical or physical transformation of gaseous precursors (e.g., 171 

Boucher et al. 2013). Primary aerosols are produced by the mechanical action of the 172 

atmosphere on the surface: over the continents, it produces mineral dust (see Figure 2); over the 173 

sea, it produces sea salts. Secondary aerosols are produced by the combustion of biomass and 174 

all types of fuels, as well as by chemical reactions of gases naturally emitted by vegetation, 175 

oceanic surfaces, and volcanic activity. In terms of radiative forcing and health impacts, most 176 

of the scientific attention is focused on secondary aerosols resulting from human activities, 177 

because of the aerosols’ size (mostly <~1μm) and composition. In terms of annual emissions, 178 

mineral dust (emitted in arid and semi-arid regions) and sea-salts are the most abundant 179 

aerosols on the Earth, with annual emissions estimated respectively to 1000-4000 Tg and 1400-180 

6800 Tg (Boucher et al. 2013). Total anthropogenic annual emissions are of the order of 181 

400 Tg, whereas the atmospheric input of cosmic dust in the terrestrial atmosphere is estimated 182 

to be 0.0018 to 0.1 Tg yr
-1

, based on daily input reported by Plane (2012). Aerosols emitted in 183 

the terrestrial troposphere have lifetimes of a few days, indicating that the concentrations of the 184 

different aerosols are not homogeneously distributed. Aerosols are often subjected to transport 185 

ranging from tens to thousands of kilometers, but the highest concentrations are observed 186 

within and immediately downwind of their source regions. In addition, different aerosol sources 187 

are located in different geographic areas, producing regions with different dominant aerosol 188 

types: mineral dust is prevalent downwind of the main desert areas (North Africa, Asia, etc.), 189 

sea salts are common over sea-surfaces and remote coastal areas, and anthropogenic aerosols 190 

form over the developed and developing countries of the northern hemisphere. Figure 3 shows 191 

a global map of AOT retrieved from MISR data over a 5 year period, showing regions of strong 192 

aerosol emission on continents and its transport over both land and water. 193 
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 194 

Different aerosols interact with radiation in different ways: many of them (e.g., sulfates, 195 

nitrates, organic aerosols) primarily backscatter solar radiation, but a few types have strong 196 

absorption properties (e.g., carbonaceous aerosols). Mineral dust has the capacity not only to 197 

backscatter radiation in the visible range, but also to absorb radiation in the IR and UV range 198 

(e.g., Redmond et al. 2010). Regarding the variety of different aerosols and the geographic 199 

distribution of their sources, detection from orbital platforms is a powerful tool for investigating 200 

the spatial and temporal variability of the atmospheric content (Lenoble et al. 2013; Chiapello 201 

2014).  202 

2.1.2 Orbital Platforms 203 

Quantitative measurements of the atmospheric aerosol load, and of particular interest to this 204 

review, mineral dust, can be derived from satellite measurements of backscattered radiation; 205 

many commonly-used instruments are listed in Table 1. The columnar extinction of solar 206 

radiation by atmospheric aerosols is quantified by the AOT (or equivalently, the AOD). For a 207 

given aerosol type, and assuming homogeneous properties exist along the atmospheric column, 208 

the AOT is proportional to the vertically-integrated atmospheric concentration weighted by the 209 

extinction efficiency. The extinction efficiency is itself largely controlled by the aerosol size 210 

distribution and composition.  211 

 212 

The first operational algorithms to detect and quantify the aerosol atmospheric load from 213 

instruments onboard satellite platforms were developed in the 1990s and applied to 214 

observations from weather satellites: the European Meteosat (Jankowiak and Tanré 1992) and 215 

the American NOAA AVHRR (Swap et al. 1996; Husar et al. 1997). The AOT derived at the 216 

global scale revealed that desert dust is responsible for the largest and most persistent aerosol 217 

loads over the world’s oceans (Herman et al. 1997; Husar et al. 1997).  218 

 219 

For many years, the retrieval of AOT was restricted to surfaces with low albedo, and in 220 

particular, to oceanic surfaces. As an alternative, indicators of the presence of an absorbing 221 

aerosol (carbonaceous aerosols and mineral dust) have been developed based on measurements 222 

both in the UV (Herman et al. 1997; Torres et al. 1998) and in the IR (Legrand et al. 1994; 223 

2001). These aerosol indices have been used widely, in particular for mineral dust source 224 

identification (i.e., Prospero et al. 2002). Sensors of novel generation, with spectral capabilities 225 

or additional types of measurements (i.e. polarization, several view angles), have significantly 226 



8 

increased the capacity to characterize the different aerosol types and to retrieve AOT over land 227 

surfaces (e.g., Martonchik et al. 2004). As an example, the MODIS data subsets from 228 

Collection 5 includes the retrieval of aerosols over "dark targets", i.e., surfaces dark enough to 229 

enable the separation of the surface and aerosol signals, such as vegetated areas. For mineral 230 

dust studies, the recent developments for the retrieval of AOT over bright desert surfaces (e.g., 231 

the "Deep Blue" algorithm by Hsu et al. 2004; 2013) offers new perspectives on the 232 

investigation of dust emission and dust storms inside and close to source regions. AOT can also 233 

be retrieved from IR observations of the SEVIRI instruments onboard the Meteosat Second 234 

Generation (Banks and Brindley 2013; Carrer et al. 2014).  235 

 236 

Retrieved AOTs may differ depending on the instrument and the algorithm. In addition, 237 

temporally-averaged AOTs can vary from one sensor to another depending on the temporal 238 

sampling. Typically, satellites in geostationary orbits provide higher sampling rates than polar-239 

orbiting satellites, but for limited regions. Another limitation is that AOT retrieval from 240 

satellites is still generally constrained to clear-sky conditions.  241 

 242 

Most of the algorithms applied to satellite sensors allow the retrieval of the AOT with an 243 

uncertainty that has been significantly reduced from that of early sensors (Meteosat, AVHRR) 244 

relative to that of the current satellite missions, which are dedicated to aerosol research (e.g., 245 

sensors from the A-Train: MODIS, MISR, POLDER). These new sensors allow the retrieval of 246 

additional parameters that provide information on aerosol size, shape or optical properties. The 247 

spectral dependence of the AOT, known as the Angström coefficient, can be used to 248 

discriminate aerosols of different size distributions. Aerosols with a significant coarse mode, 249 

such as mineral dust or sea salt, have Angström coefficient values close to 0, whereas aerosols 250 

dominated by fine-mode particles, such as particles from fossil fuel combustion and biomass 251 

burning, have Angström coefficients higher than 1. Simultaneous information on AOT and 252 

Angström coefficients can thus be used to estimate the atmospheric load of mineral dust 253 

containing large amounts of coarse particles. Some of the recent sensors enable discrimination 254 

of the contribution of fine and coarse modes to the total AOT (e.g., MODIS), which, for 255 

example, helps to distinguish fine pollution aerosols from coarse mineral dust. Aerosol retrieval 256 

from the POLDER instrument can be used to distinguish spherical and non-spherical aerosols 257 

within the coarse mode (Herman et al. 2005), and thus further refine the detection of mineral 258 

dust (Tanré et al. 2011; Peyridieu et al. 2010). Several parameters (Angström exponent, size 259 

fraction, absorption), especially those derived from MODIS data, can be combined to separate 260 
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the different types of aerosols (Kaufman et al. 2005; Ginoux et al. 2012). However, the 261 

unambiguous identification of dust is still challenging, particularly in regions where dust can be 262 

mixed with other optically active species (e.g., biomass burning aerosols). It must also be noted 263 

that most of these aerosol products are available from instruments onboard polar-orbiting 264 

platforms, providing one observation per day at one time of the day. This orbital configuration 265 

is relevant for documenting medium to long-range transport of mineral dust, identifying source 266 

regions, and for climatological studies, but it is not well-suited to monitoring specific dust 267 

storms at regional and local scales. Spatial resolution is also an issue, with the AOT collection 268 

most frequently binned to a spatial resolution on of the order of 1º. The spatial and temporal 269 

resolution provided by geostationary platforms is much higher. Color composites of 270 

observations from SEVIRI instruments onboard the MSG satellites have been widely used to 271 

monitor dust events over the Sahara and the Sahel either for large continental dust storms (e.g. 272 

Slingo et al. 2006) or to identify dust plumes associated with mesoscale convective systems 273 

(e.g. Marticorena et al. 2010). The AOT over land, including desert surfaces, can be retrieved 274 

from SEVIRI measurements with a nadir spatial resolution of 3 km, as well as an extra high-275 

resolution visible channel at a nadir resolution of 1 km (Banks and Brindley 2013).  276 

 277 

In parallel with the development of new, but vertically-integrated, aerosol products, lidar 278 

techniques have been developed both from ground-based and airborne platforms. They provide 279 

the unique opportunity to document the vertical structure of mineral dust distribution. The first 280 

lidar observations of dust from space were provided by LITE, which flew on the Space Shuttle 281 

Discovery in 1994 (e.g, Berthier et al. 2006), and GLAS, on ICEsat (Spinhirne et al. 2005), 282 

although it is interesting to note that these sensors were preceded by the original MOLA on the 283 

failed Mars Orbiter mission (Zuber et al. 1992). Since 2006, lidar aerosol and cloud 284 

observations have been available from the CALIPSO mission (Winker et al. 2010). The 285 

CALIOP lidar onboard CALIPSO measures aerosol profiles with a 30 m vertical resolution and 286 

70 m horizontal resolution, and thanks to depolarization measurements, it enables aerosol 287 

classification, including identification of nonspherical particles typified by mineral dust (Omar 288 

et al. 2009).  289 

2.1.3 Spatial and temporal patterns of dust lifting 290 

From satellite observations, significant progress has been made regarding specific dust 291 

transport events, including determining their regional transport patterns, seasonal and 292 

interannual variability, and long-term trends in relation to climatic conditions or change in 293 
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anthropogenic pressure. Climatology of aerosols and/or mineral dust has been extensively 294 

investigated with different aerosol products, from the "historical" weather sensors (Meteosat, 295 

AVHRR) and from dedicated sensors (e.g., Remer et al. 2008). The transport of mineral dust 296 

from the Sahara, the most intense dust source on Earth, has been the most frequently studied, 297 

allowing, for example, identification of the synoptic conditions associated with its transport 298 

pattern over the Atlantic Ocean (Huang et al. 2010). Lidar observations from CALIOP have 299 

been used to estimate the flux of the Saharan dust exported along this pathway (Yu et al. 2015). 300 

A re-analysis of the SeaWiFS decadal data set has been performed with the "Deep Blue" 301 

algorithm to analyze the trends in the variation of aerosols, including mineral dust, both over 302 

oceanic and continental surfaces of the world (Hsu et al. 2012). Since AOT retrieval can be 303 

performed only in clear-sky conditions, dust transport from other source regions can be difficult 304 

to detect. This is the case, for example, for dust coming from sources at high latitudes in the 305 

southern hemisphere, where the viewing geometry is not always ideal and bright sea ice 306 

interferes with AOT retrieval (e.g., Gasso and Stein 2007). However, dust has also been 307 

detected by remote sensing at high latitudes, such as in Alaska, New Zealand or Iceland 308 

(Prospero et al. 2012). The distribution of the main sources of desert dust on the Earth has been 309 

investigated using the TOMS aerosol index with a spatial resolution of 1°×1.25° (Prospero et 310 

al. 2002). To investigate the link between dust emission occurrence and meteorological 311 

processes, Shepanski et al. (2009) used a combination of aerosol index and AOT retrieval in the 312 

IR with a 15-min timescale at 1°×1° resolution. Over time, there has been a trend toward the 313 

production of ever-higher resolution products, largely motivated by the need for aerosol 314 

retrievals over continental urban areas for air quality applications. As an illustration, the 315 

Collection 6 algorithm that produces MODIS aerosol products includes, in addition to the 316 

standard retrieval at a resolution of 10 km×10km, a new product with a resolution of 3km×3km 317 

(Levy et al. 2013). The AOTs derived from SEVIRI are also available in the native 318 

geographical projection of MSG/SEVIRI (AERUS-GEO product, Carrer et al. 2014). 319 

 320 

Figure 4 illustrates continental regions prone to high aerosol concentrations that are either 321 

entrained locally or transported from elsewhere (Ginoux et al. 2012). Areas of high optical 322 

depth include the Sahara and Sahel deserts, the Middle East, northern India, the coasts of the 323 

Aral and Caspian seas, basins in central Asia, the Lake Eyre Basin in Australia, and deserts in 324 

Namibia, Chile, and Peru. Prospero et al. (2002) found that most sources of mineral dust are 325 

located in topographic depressions that contain deep alluvial and lacustrine deposits subject to 326 

(and often built by) episodes of flooding. Because of the higher proportion of land coverage, 327 
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the northern hemisphere is dustier than the southern hemisphere. In most areas, the dusty 328 

season occurs in local spring and/or summer, with the season of minimum dust occurring in 329 

local autumn (e.g., Ginoux et al. 2012).  330 

 331 

Monitoring interannual variations in dust loading has shed some light on the forcing 332 

mechanisms that control dust entrainment and transport. Most multi-year studies have focused 333 

on dust transport from northern Africa over the north Atlantic (Chiapello 2014). Years with 334 

increased dust in the north Atlantic correlate with lower rainfall rates in the Sahel during the 335 

preceding year (Prospero and Lamb 2003; Moulin and Chiapello 2004; Chiapello et al. 2005). 336 

For example, long-term measurements indicate a peak in dustiness over the north Atlantic in 337 

the 1980s that has declined in the years since (Foltz and McPhaden 2008; Evan and 338 

Mukhopadhyay 2010). This decline in DOD/AOT corresponds with an increase in rainfall in 339 

the Sahel since the mid-1980s (Chiapello 2005), which may have increased vegetation cover, 340 

thus reducing dust emission (Cowie et al. 2013). However, Chin et al. (2014) proposed that dust 341 

emission decreased instead as a result of reduced wind speeds in north Africa, driven by 342 

increased sea surface temperatures in the North Atlantic. Establishing a causal relationship 343 

between observed trends is critical for understanding the role of aerosols in the Earth’s climate 344 

system. 345 

2.1.4 Changed perspectives on the role of dust in the terrestrial climate system? 346 

Figure 3 and Figure 4 show the spectacular extent of mineral dust plumes and the fact that 347 

mineral dust is responsible for the highest measured AOT on Earth. The analysis of a long 348 

time-series from orbital observations highlights the interannual variability of the dust content 349 

and multidecadal trends in relation with climatic parameters. In addition, satellite observations 350 

have been used to estimate the impact of aerosol forcing. For example, based on multiple 351 

satellite data sets and a radiative model, Zhu et al. (2007) estimated the shortwave (visible) and 352 

longwave (IR) radiative impact of dust downwind of the three largest mineral dust source 353 

regions: eastern Asia, the Arabian Peninsula and the Sahara Desert. The mean seasonal and 354 

regionally-averaged reduction of radiative flux (visible+IR) at the surface has been estimated in 355 

clear-sky conditions to be 5.9 W m
-2

, 17.8 W m
-2

, and 14.2 W m
-2

, over the Yellow Sea, the 356 

Arabian Sea and the west African coasts, respectively. The relative contributions of shortwave 357 

and longwave heating both at the surface and at the top of the atmosphere have been estimated 358 

and found to be very different for these three regions. The dust plume over the Arabian Sea was 359 

found to produce the largest effect on atmospheric heating, mainly due to shortwave heating. 360 
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The maximum longwave effect on heating rates occurred over the western African coast 361 

downwind of the Sahara, resulting in strong cooling throughout the dust layer that offset up to 362 

80% of the shortwave heating, with moderate heating below. Finally, the net radiative heating 363 

rate over the Yellow Sea is the smallest among these three regions. This heating or cooling 364 

effect can impact atmospheric dynamics at both local and synoptic scales. In the eastern 365 

Atlantic, Wong et al. (2009) suggested that Saharan dust contributed to about 50% of the 366 

detected heating rate anomalies and thus has a substantial impact on atmospheric stability. This 367 

effect is also suspected to influence the development of cyclones and may explain a possible 368 

inhibition on the formation of tropical cyclones, revealed by an anti-correlation between north 369 

tropical cyclone activity and Saharan dust cover (Evan et al. 2006).  370 

 371 

Mineral dust, being of natural origin, is not accounted for in the estimation of the radiative 372 

forcing as defined by the IPCC, except for the fraction of the global dust load attributed to 373 

"anthropogenic" dust (i.e., that which is emitted from disturbed land). However, the large 374 

radiative effect of mineral dust and its variability in space and time must be accounted for in the 375 

estimation of the change in the aerosol load and its impact on climate. An analysis of global 376 

simulations and observations of multi-decadal (1980 to 2009) aerosol variations suggests that 377 

the strong variability of mineral dust emission and transport has partly dampened the changes in 378 

anthropogenic aerosol loads and highlights the fact that natural aerosols, such as mineral dust, 379 

play an important role in determining the regional and global aerosol budget, even over major 380 

pollution source regions (Chin et al. 2014). A comparison of the simulations of the mineral dust 381 

cycle by 15 global models, mainly driven by meteorological re-analysis, has been performed in 382 

the frame of the AeroCom project (Huneeus et al. 2011), and it shows large discrepancies 383 

between models. On average, the climatology of AOT due to mineral dust was reproduced to 384 

within a factor of two, and the surface concentrations and deposition were reproduced to within 385 

a factor of ten. The capacity of climatic models to reproduce the present-day AOT climatology 386 

is even lower (Evan et al. 2014). Further work is needed to understand the response of aerosols 387 

to, and their interaction with, Earth’s changing climate system (Boucher et al. 2013). 388 

 389 

Paleoarchives from ice cores (e.g., Vallelonga and Svensson 2014), deep-sea sediments (e.g., 390 

Winckler et al. 2008) and loess sequences (e.g., Muhs et al. 2014) have revealed variations of 391 

the atmospheric dust load variations between glacial and interglacial periods (Maher et al. 392 

2010), with dust concentrations at the Last Glacial Maximum (25 ka BP) of 80-100 times that 393 

of interglacials and the present-day. Understanding the link between the mineral dust cycle and 394 
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climate for past periods on Earth is still challenging. Uncertainties mainly arise from the need 395 

for climate models to properly represent dust emission processes and their link with surface 396 

properties (e.g., soils, vegetation, moisture, etc.) and the feedback that dust radiative effects can 397 

have on the climate, which are equally as complex as modeling the mineral dust cycle on Mars. 398 

 399 

2.2 Mars 400 

In this subsection we discuss our knowledge of aerosols in the martian atmosphere, how lifting 401 

has been observed from orbital platforms and the spatial and temporal variability of dust in the 402 

atmosphere that results. We briefly review, by comparison with the Earth, what orbital 403 

observations tell us about the role of convectively-lofted dust, such as that from DDs, in the 404 

martian climate system. 405 

2.2.1 Aerosols on Mars 406 

Many of the processes that create aerosols on Earth, such as sulfate emissions from volcanic 407 

eruptions and fossil fuel combustion, sea salt from spray, and smoke and soot from fires, do not 408 

occur on Mars (although volcanic eruptions and possibly sea salt spray contributed to 409 

atmospheric aerosols in the distant past). Failing to account for light scattering by atmospheric 410 

dust led early 20
th

 century efforts to overestimate the surface air pressure of Mars by more than 411 

a factor of five (Kieffer et al. 1992). Mineral dust is a major forcing mechanism in the martian 412 

atmosphere, and it is intimately linked with interannual variability in the martian climate (e.g., 413 

Zurek et al. 1992; Read and Lewis 2004). Lifting may be accomplished by winds linked to 414 

large-scale weather systems or atmospheric tides (Wang et al. 2003; Hinson and Wang 2010; 415 

Hinson et al. 2012; Wang and Richardson 2015), local mesoscale gusts or topographic flows ( 416 

Spiga and Lewis 2010; Mulholland et al. 2015), or on much smaller scales by convective 417 

motions (Spiga and Forget 2009), such as the DDs (Balme and Greeley 2006; Greeley et al. 418 

2010) that are the primary focus of this review. 419 

 420 

The primary effect of martian dust is to provide local heating to the atmosphere through 421 

absorption of solar shortwave radiation. Dust in the atmosphere also absorbs, scatters and re-422 

radiates radiation at longer wavelengths, such as thermal infrared emission originating from the 423 

surface (Smith 2004). The net effect is to warm the atmosphere where it is most dusty and in 424 

daylight, and to cool the surface below regions with very high dust opacity. If atmospheric dust 425 

loading varies from place-to-place, this may introduce or steepen horizontal temperature 426 
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gradients within the atmosphere that are, in turn, linked to winds. Winds in the atmosphere both 427 

advect dust and may lift more from the surface. In a heavily dust-laden atmosphere, the effect is 428 

to warm the atmosphere relative to the surface, which increases its static stability and tends to 429 

ultimately reduce both vertical convection during the day and large-scale wave-like 430 

instabilities, both reducing the likelihood of dust lifting from the surface and ultimately leading 431 

to the slow decay of planet-encircling dust events (e.g., Cantor 2007). In this way, atmospheric 432 

dust provides complex positive and negative feedbacks to the martian climate system. 433 

 434 

Dust aerosols have an additional potential feedback as nuclei for cloud ice particles, which in 435 

turn impact atmospheric radiative heating and cooling (Montmessin et al. 2004; Wilson et al. 436 

2008; Madeleine et al. 2012a; Hinson et al. 2014; Navarro et al. 2014; Steele et al. 2014a; 437 

2014b), although, unlike on Earth, it seems likely that there will always be a sufficient supply 438 

of small dust particles on Mars to nucleate the relatively thin water ice clouds that have been 439 

observed (Heavens et al. 2010; Madeleine et al. 2012b). Clouds, in turn, may further increase 440 

the complexity of the climate feedbacks, by accelerating the removal of dust from the 441 

atmosphere by scavenging smaller particles, thereby enhancing the sedimentation rate 442 

(Madeleine et al. 2012a; Navarro et al. 2014). 443 

 444 

 445 

2.2.2 Orbital Platforms 446 

Spacecraft orbiting Mars with instruments useful for monitoring the dust aerosol distribution 447 

are listed in Table 2. The reader is referred to Snyder and Moroz (1992) for a review of the 448 

early reconnaissance of Mars including additional television camera and other instrumentation.  449 

 450 

Most orbital observations of martian atmospheric dust have been made with nadir-viewing 451 

cameras that sense reflected solar light, or with spectrometers that sense thermal emissions of 452 

dust and gasses. The first quantitative observations came from the Mariner 9 Infrared 453 

Interferometric Spectrometer (IRIS), which provided 5-50 μm spectral coverage showing CO2 454 

and dust emission/absorption features that were used to monitor the decay of the 1971 planet-455 

encircling dust storm (Hanel et al. 1972). CO2 has a strong and distinctive 15-μm band that 456 

allows temperature sounding. Silicate dust has a 9-μm band that, with atmospheric temperature, 457 

can be used to derive column opacity. Orbital instruments tend to be least sensitive to boundary 458 

layer dust, as a strong temperature contrast with the surface is helpful in thermal emission 459 
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sounding. The Viking Orbiters made similar measurements with the IRTM. Martin (1986) 460 

modeled the data using albedo from the solar channel, thermal inertia from 20-μm emission, 461 

and gas and dust emissions from 7- to 15-μm channels, and derived a time-series of AOT that 462 

compared well with contemporaneous Viking Lander data. IRTM data was used to characterize 463 

the onset and decay of both planet-encircling dust storms (Martin and Richardson 1993). 464 

Fenton et al. (1997) applied the Martin (1986) technique to IRIS data to quantify the decay of 465 

the 1971 storm, showing that dust spatial distributions varied less as the storm decayed, with 466 

exponential timescales ranging from 42 to 67 sols. 467 

 468 

Contemporaneously, imaging of the surface was used for geologic mapping and meteorology. 469 

The Viking Orbiters mapped the planet with two vidicon visible-light cameras (VIS). Solar 470 

reflectance imaging of dust is hampered by the extensive dust coverage of the surface, so that a 471 

low dust load in the atmosphere is difficult to distinguish. However, dust storms have been 472 

distinguished due to color, morphology, and temporal changes. Baroclinic storms were 473 

identified using imaging and thermal data from VO (Hunt and James 1979). Local and regional 474 

dust storms were identified and confirmed as dust – rather than water ice – using color data, 475 

with most occurring near perihelion and southern summer, including many at the receding cap 476 

edge (Briggs et al. 1979).  Orbital monitoring of martian atmospheric dust has been essentially 477 

continuous since the arrival of MGS in 1997, with each orbiter carrying at least one imager (see 478 

Table 2).  479 

On polar orbiting spacecraft, cameras with limb-to-limb fields of view build up a daily map 480 

over the course of ~12 2-hour orbits. MOC WA obtained daily global maps that have been used 481 

to track the evolution of local, regional, and planet encircling dust storms (e.g., Cantor et al. 482 

2001; Cantor 2007). Cantor et al. (2001) characterized the source regions of local and regional 483 

dust storms, showing differences compared to the Viking era. Frontal storms frequently follow 484 

the receding (springtime) polar cap (Wang and Fisher 2009). Regional storms tend to originate 485 

in the low-lying Acidalia, Utopia, Arcadia, and Hellas Planitiae (Wang and Richardson 2015). 486 

Storms exhibiting visible structures on the cloud tops have been interpreted to indicate regions 487 

of active dust lifting; these features are most common in the low-lying planitiae that produce 488 

regional storms (Guzewich et al. 2015). MARCI data have shown north polar region dust 489 

storms at all times of year, but especially in early northern spring and mid-summer (Cantor et 490 

al. 2010). Mars Daily Global Maps (MDGMs) allow the tracking of individual storms (see 491 

Figure 5) and the aggregation of data over time. Figure 6 shows typical storm tracks, including 492 
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the north-to-south Acidalia, Arcadia, and Utopia cross-equatorial storms; and the Hellas and 493 

Solis sources of southern east-west storm tracks.  494 

 495 

In addition to imaging, thermal emission has been used to monitor atmospheric dust on each 496 

orbiter. Interferometric sounders like IRIS comprise MGS TES and Mars Express PFS. Multi-497 

channel sounders like IRTM comprise ODY THEMIS IR and MRO MCS. MGS TES observed 498 

thermal emission of dust and gas, and has been used to track the zonal and seasonal 499 

development of the 9-μm AOT (Smith 2004). TES data show 3 Mars years of dust variations 500 

(MYs 24-26), in context with temperature and water vapor and ice variations, and include one 501 

planet-encircling dust storm (in MY 25). THEMIS has been used to obtain maps with 5 502 

reflectance bands and 10 thermal emission bands (Christensen et al. 2004). The thermal bands 503 

have allowed the cross-calibration with TES results and the temporal extension of the 9 μm 504 

optical depth maps past the end of the MGS mission (Smith 2009). Unlike MGS, Odyssey, and 505 

MRO, Mars Express is not in a circular or polar orbit and it samples varied local times each 506 

periapse. However, the effects of dust storms on the thermal environment can still be studied; 507 

for example, Määttänen et al. (2009) found that the thermal impact of one local dust storm was 508 

confined to the lowest two scale heights. PFS data suggest the dust is well mixed with the gas 509 

even far from dust storms, with a mean AOT of 0.25 at 0-km elevation (Zasova et al. 2005; 510 

Grassi et al. 2007). In addition to nadir-looking measurements, MCS acquires multi-channel 511 

radiometry in a limb-scanning geometry. It thus retrieves AOT as well as vertical profiles of 512 

dust (Kleinböhl et al. 2009). Detached layers have been found with the vertical profiling, 513 

helping to diagnose heating and circulation (Heavens et al. 2011). For comparison across bands, 514 

the ratio of visible AOT to infrared AOT was determined by contemporaneous rover-based 515 

observations to vary from about 3 in northern summer to about 1.3 during southern summer 516 

dust storms, with the differences likely coming from different particle sizes (Lemmon et al. 517 

2015).  518 

 519 

Mars Express and MRO carry infrared reflectance mapping spectrometers, OMEGA and 520 

CRISM, respectively. For the purpose of monitoring dust aerosols, these can function as 521 

context imagers (Reiss et al. 2014). However, they have the advantage of additional gas 522 

absorption bands, which enable vertical sounding. Further, they aim in differing directions, and 523 

can image the same area in multiple viewing geometries (an emission phase function, or EPF, 524 

sequence) or even image in a limb-viewing geometry. These capabilities are used to study 525 
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physical properties of the dust (e.g., Wolff et al. 2009) and the vertical distribution (Smith et al. 526 

2013).   527 

 528 

The first occultation spectrometer to orbit Mars, capable of vertical sounding of AOT from 529 

photometry of the Sun as it rose (or set) above the limb of the planet, was flown on the Soviet 530 

Phobos mission. During its short operational lifetime, the Phobos mission obtained 9 solar-531 

occultation profiles, in 2 infrared channels, of the dust extinction at altitudes of 12-35 km 532 

(Korablev et al. 1993). These data suggested 1-2 μm dust existed in radiatively significant 533 

quantities at altitudes of 15-25 km. The Mars Express SPICAM has UV and IR channels, and 534 

operates in nadir mode and limb mode, as well as stellar (UV only) and solar occultation 535 

modes. Solar occultations have been used for a climatology of vertical distribution of the dust 536 

over 4 Mars years including the MY 28 (2007) planet encircling dust storm (Määttänen et al. 537 

2013). Such observations traced the summer to winter dust transport pathway at high altitudes. 538 

Combining UV and IR occultation data allowed the particle size distribution (PSD) to be 539 

inferred. A bimodal size distribution was found, with a small mode unstable to coagulation and 540 

too large to be supplied by meteoric inflow, suggesting a continual supply of fine surface dust 541 

from DDs and other winds (Federova et al. 2014). An additional vertical sounder, MOLA, used 542 

nadir-looking LIDAR for altimetry. As a by-product, scattering from aerosols was also seen, 543 

showing column abundance, vertical extent, and relationship to clouds (Smith et al. 2001). 544 

MOLA tracked dust storms for 1.25 Mars years, including the MY 25 (2001) planet encircling 545 

dust storm, and identified dust-ice fogs and possible DDs (Neumann et al. 2003).   546 

2.2.3 Spatial and temporal patterns of dust lifting 547 

Having summarized observations made from spacecraft in the previous subsection, we now 548 

turn to a description of the dust loading of the martian atmosphere as observed from space. It is 549 

important to note first that although lifting processes are sometimes observed directly (e.g. 550 

Cantor et al. 2006) or inferred from the sudden growth of dust loading in a region (Cantor et al. 551 

2001; Wang et al. 2003; Strausberg et al. 2005; Wang 2007; Wang and Richardson 2015) or by 552 

the texture of dust clouds (Guzewich et al. 2015), lifting is rarely observed directly and the 553 

observations are really of dust once it is airborne, and potentially after advection over large 554 

distances from its original source. Similarly, landed spacecraft may see passing DDs (Ferri et 555 

al. 2003; Greeley et al. 2010) or monitor changing background dust loading (Colburn et al. 556 

1989; Smith and Lemmon 1999; Smith et al. 2004; Lemmon et al. 2015), without observing the 557 

lifting process. The sparse nature of the coverage in both space and time for Mars relative to 558 
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that of the Earth means that it is difficult to quantify the relative sizes and distributions of dust 559 

lifting sources based on observations alone. 560 

 561 

Martian dust is generally observed at either visible or infrared wavelengths. Earlier 562 

observations of Mars dust, with particular emphasis on large and planet-encircling events were 563 

documented by Martin and Zurek (1993). This record was later extended to include smaller and 564 

regional storms using more detailed visible wavelength imaging from polar orbiters (e.g., 565 

Cantor et al. 2001; Cantor 2007; Wang 2007; Wang and Fisher 2009; Wang and Richardson 566 

2015). The emphasis in all these studies is, however, on discrete dust storms. These occur 567 

principally from northern hemisphere autumn equinox to spring equinox, i.e., throughout the 568 

winter period. Dust loading is much lower and discrete storms are rarely observed throughout 569 

the northern hemisphere summer half of the year (Ls = 0°–180°), which is the period when Mars 570 

is presently furthest from the Sun (aphelion is close to Ls = 70°), and the circulation and winds 571 

are at their least intense. It is during this period, when the atmosphere is relatively clear and the 572 

surface-atmosphere thermal contrast is at its greatest, that convection (Petrosyan et al. 2011), 573 

and so DDs (Rennó et al. 1998; Newman et al. 2002a; 2002b), are likely to be most active and 574 

to contribute to the background dust levels that are observed. 575 

 576 

Polar orbiters have also provided an almost continuous record of near-infrared dust optical 577 

depths ranging from MGS/TES (Smith 2004), through ODY/THEMIS (Christensen et al. 578 

2004), to more recent MRO/MCS observations (McCleese et al. 2010; Heavens et al. 2011a). 579 

The MRO/MCS observations are limb soundings that include information on the vertical 580 

distribution of the dust (Heavens et al. 2011b) in contrast to previous infrared soundings that 581 

were mostly nadir observations of total dust opacity. MRO/MCS has revealed dust to be more 582 

complex in its vertical distribution than previously suspected, with layering possibly related to 583 

deep convective motions (Spiga et al. 2010; Rafkin 2012). 584 

 585 

The observations described above are neatly summarized into an eight-year climatology of 586 

martian dust by Montabone et al. (2015). Figure 7 shows the infrared column dust absorption 587 

optical depth from this dataset, averaged over all longitudes, as a function of latitude and time 588 

of year (Ls). The dust absorption optical depth was measured at 9.3 µm, and then normalized to 589 

a consistent reference pressure of 610 Pa. This optical depth should be multiplied by about 2.6 590 

to get an equivalent broadband visible dust total extinction. Two features are of particular note: 591 

the variability in the timing and occurrence of the periods of high dust loading in northern 592 
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hemisphere winter  (Ls = 180°–360°), in particular the planet-encircling dust events in MY 25 593 

(2001) and MY 28 (2007); and the remarkable repeatability and much lower levels of dust 594 

loading in northern hemisphere summer  (Ls = 0°–180°) 595 

 596 

2.2.4 Changed perspectives on the role of dust in the martian climate system? 597 

In contrast to those performed for Earth, the majority of recent martian dust observations have 598 

been made from space (mostly from orbiting spacecraft, but including images from the Hubble 599 

Space Telescope), with the exception of a handful of discrete surface landers and earlier 600 

telescopic observations from Earth (see Chapter 2 for further detail on dust observations from 601 

the martian surface). Hence, understanding of the role of dust on a global scale has been 602 

gradually accumulated primarily through orbital monitoring rather than any other source of 603 

observations, in direct contrast to the Earth. The major qualitative change in our understanding 604 

of dust on Mars has come from the increased temporal and spatial resolution of observations. 605 

Before the late 1970s, observations naturally tended to select the largest dust events only, since 606 

these could be most readily observed either by a ground-based telescope or from a spacecraft 607 

that was either on a fly-past or in a high orbit with limited resolution (Martin and Zurek 1993). 608 

Dust variability has now been observed over a much wider range of spatial and temporal scales 609 

with the advent of polar orbiting spacecraft in relatively low orbits carrying optical cameras, 610 

such as MGS/MOC and MRO/HiRISE and MARCI (Cantor et al. 2001; Cantor 2007; Bell et al. 611 

2009; McEwen et al. 2010), and infrared sounders, such as MGS/TES, ODY/THEMIS and 612 

MRO/MCS ( Smith et al. 2000; 2001; Christensen et al. 2004; Smith 2004; McCleese et al. 613 

2010; Heavens et al. 2011a), and of landers with increasing spectroscopic capability (Smith et 614 

al. 2004). Despite this progress, many questions about the relative role of DDs within the 615 

martian dust cycle remain unanswered. 616 

 617 

Considerable progress can be made through modeling the martian dust cycle (Newman et al. 618 

2002a; 2002b; Basu et al. 2004; Newman et al. 2005; Basu et al. 2006; Kahre et al. 2006; 619 

Mulholland et al. 2013; 2015). These are discussed further in Chapter 11 of this volume. It is 620 

worth noting at this stage that different combinations of dust lifting schemes can be tuned to 621 

produce results that are very broadly in accordance with the observed dust opacity on Mars 622 

throughout the year (see Figure 8). Of these, Kahre et al. (2006) make a direct assessment that 623 

about one half of the total dust lifted through the year comes from their DD lifting sub-model, 624 

with the other half coming from near-surface wind stress lifting, including saltation processes. 625 

Newman et al. (2005) do not provide a comparable number, but an estimate from figures 626 
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included for their present day simulation suggests that a smaller, but perhaps not significantly 627 

so, fraction of the dust comes from their DD lifting model. An important caveat is that the total 628 

dust opacity has been broadly tuned to observations, but there is no guarantee that all the near-629 

surface wind stress processes are properly accounted for in these moderate resolution models. 630 

The DD lifting sub-model may, in practice, also be accounting for small-scale winds, such as at 631 

the polar cap edges, that are missed by the models. The estimate of roughly half the total dust 632 

lifted being from DDs is therefore potentially an overestimate. 633 

 634 

Finally, it can be noted that dust opacity measurements have begun to be assimilated into Mars 635 

GCMs. Early efforts (Montabone et al. 2005; Lewis et al. 2007) permit dust to be tracked in 636 

three dimensions even from sparse spacecraft observations, but are not yet sufficiently 637 

developed to isolate the various sources of dust at the surface unambiguously, although work is 638 

ongoing. Figure 8 demonstrates this by showing dust broadband visible optical depth, 639 

normalized to 610 Pa, at intervals of 4, 4, 4, 4, and 12 sols made during a regional dust storm in 640 

Noachis Terra in MY 23 (1997), at a time when MGS/TES was taking limited data (about one 641 

orbit per day) during its aerobraking hiatus observing phase. The plots are polar stereographic 642 

with the south pole at the centre, the equator at the edge, the prime meridian pointing upward 643 

and a grid spacing of 15° in latitude and 30° in longitude. The evolution of the dust in longitude 644 

as well as latitude can be tracked by the data assimilation technique. 645 

3 Dust Devils 646 

In this section we describe the discovery of prevalent DD formation as observed from orbiting 647 

spacecraft, primarily that on Mars. As with dust storms, the physical characteristics and spatio-648 

temporal patterns of convectively-lofted dust tell a story about atmospheric conditions in the 649 

PBL, filling a gap in knowledge on Mars that is yet largely unaddressed on Earth. 650 

3.1 Earth 651 

Terrestrial DDs have not yet been observed directly with orbital data. Given their prevalence in 652 

orbital images of Mars, it is a mystery as to why none have yet been reported on Earth. Ground-653 

based measurements suggest that they are wide enough to be visible in high resolution images 654 

(Balme and Greeley 2006; Lorenz 2011). A plot of the minimum martian dust devil diameter 655 

detected from imagers of varying spatial resolution shows that smaller dust devils are detected 656 

with finer resolution cameras (see Fig. 9); the same trend is likely present on Earth, implying 657 

that image resolution is not the problem. Note from Fig. 9 that the more extensive surveys are 658 
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more likely to identify smaller (and more plentiful) DDs, indicating that sample size is 659 

important for orbital DD detection (see Chapter 8 for further discussion of DD size 660 

distributions). There may be other factors at play in the failure to detect terrestrial DDs from 661 

orbit. For example, DDs form most frequently when insolation is at a maximum, whereas most 662 

high resolution imagers orbit sun-synchronously with equatorial crossing times ~10:30, before 663 

much DD activity gets underway. In addition, Earth is much more cloudy than Mars, which 664 

would inhibit DD detection from above (also, clouds are also likely to suppress DD formation). 665 

Despite these limiting factors, we propose that DDs should be visible in orbital images of arid 666 

landscapes on Earth, and that a search for their presence in images should be considered.  667 

 668 

In contrast to direct DD detection, tracks of DD passages have been identified in orbital images 669 

in several desert regions on Earth. The first DD tracks on Earth were identified in ASTER 670 

images by Rossi and Marinangeli (2004) in the Ténéré Desert, Niger. Further DD tracks on 671 

Earth were found in publicly-available high resolution satellite images such as GeoEye, 672 

Quickbird, and WorldView through the web interfaces of Google Earth and Bing Maps. 673 

Neakrase et al. (2008; 2012) found DD tracks in the east-central Sahara, including southwestern 674 

Libya, southern Libya, northeastern Chad, and the Egypt-Libya border. Reiss et al. (2010) 675 

identified DD tracks in the Turpan depression desert (north-west China) and analyzed them in-676 

situ (Reiss et al. 2010; 2011a). Hesse (2012) and Reiss et al. (2013) observed DD tracks in the 677 

coastal desert of southern Peru in orbital imagery, which were also analyzed in situ by Reiss et 678 

al. (2013). For further details on DD tracks, we refer the reader to Chapter 4. 679 

 680 

3.2 Mars 681 

The first orbital detections of DDs on Mars were found in VO images by Thomas and Gierasch 682 

(1985), although convective vortices had been previously identified on the surface, in 683 

temperature and wind data from VL1 and VL2 (Ryan and Lucich 1983). These discoveries 684 

were no surprise, with their presence having been previously predicted both from a theoretical 685 

standpoint and from observations of dust clouds (Ryan 1964; Neubauer 1966; Gierasch and 686 

Goody 1973). These early investigations from 1970s-era Viking data verified the suspected 687 

prevalence of insolation-driven free convection in the martian atmosphere, fueled by a 688 

superadiabatic layer near the surface. 689 

 690 
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Since those first observations, DDs have been observed by nearly every camera in orbit around 691 

Mars; Figure 10 shows visible images of DDs from each instrument used for their study. As on 692 

Earth, martian DDs stand out as distinctive nearly-vertical, tapered dust columns, with shadows 693 

extending to the base of the dust column at the surface. With every successive mission to Mars, 694 

new cameras have imaged the surface with generally increasing spatial and spectral resolution 695 

(see Table 2), allowing for both DD monitoring and detailed study of DD morphology and 696 

dynamics. Although a broad view from above may appear the best way to monitor DD 697 

occurrence and physical characteristics, it is worth emphasizing that there are biases in orbital 698 

data sets. For example, DD densities measured from orbit appear to be higher than those 699 

measured from the surface. Lorenz (2013) proposed that this enhancement is caused by the 700 

(typically nearly nadir) viewing angle being partly aligned with the (typically nearly vertical) 701 

DDs, such that the bright dust columns are foreshortened and thus appear brighter than they 702 

would from an oblique or horizontal perspective (e.g., from the ground). A further bias in 703 

orbital imagery is towards larger DDs. This is caused in part by camera resolution, which 704 

cannot reliably detect any features smaller than a few pixels. However, as Lorenz (2013) 705 

discussed, this is exacerbated by DD longevity, which is correlated with DD size (Sinclair 706 

1969).  707 

 708 

DDs have not been observed in every location on Mars. However, the lack of detection from 709 

orbit does not imply that vortices have not formed or cannot form at a given location or time. 710 

Areas that lack sufficient amounts of loose dust may experience vigorous daytime convective 711 

turbulence, but fail to entrain enough dust to render vortices visible in orbital images. Surface 712 

lineations interpreted to be DD tracks have been identified in many locations where DDs have 713 

not been directly observed (for further discussion see Chapter 4). Another factor influencing 714 

DD detection is the local time of image acquisition, as DD formation is highly sensitive to the 715 

thermal contrast between the ground and lower PBL (e.g., Deardorff 1978). Image data sets 716 

routinely obtained during peak DD formation hours are more likely to capture them in action 717 

(e.g., MOC, CTX, and HiRISE), whereas DDs are less likely to be seen in images obtained 718 

either at a different routine local time or at varying local times (e.g., VO, THEMIS, and 719 

HRSC). 720 

 721 
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3.2.1 DD inventories 722 

There have been several global-scale surveys of martian DDs, each using image datasets of 723 

vastly different spatial resolution and temporal coverage (see Table 3). The first survey was 724 

conducted by Thomas and Gierasch (1985) using VIS images from VO during MYs 12-14, 725 

corresponding to the late 1970s on Earth (an example is shown in Figure 10a). Their study 726 

required that DDs be transient phenomena for positive detections (i.e., identified in only one of 727 

two overlapping images), to ensure they were not mistaken for landforms. Although DDs 728 

typically have a distinctive morphology, small hills can replicate their shape, and so the 729 

requirement of transience is often still in use today. Because of the limited amount of 730 

overlapping high resolution VO image coverage, Thomas and Gierasch (1985) identified only 731 

99 DDs, found in two limited regions in the northern hemisphere lowlands (see Figure 11). 732 

Although the VO images did not fully sample the martian surface, Thomas and Gierasch (1985) 733 

did examine the entire data set, so that their survey was as “global” as the 1970s-era mission 734 

permitted. A similar but unpublished survey of DDs in VO images by Wennmacher et al. 735 

(1996) focused on these areas and the Viking Lander sites, finding more than 30 DDs, many of 736 

which were previously unidentified. An automated pattern recognition algorithm detected 313 737 

individual DDs in the high resolution VO images of Amazonis Planitia as a first step towards 738 

applying the algorithm to HRSC images, although the rest of the VO data set has not yet been 739 

investigated (Stanzel 2007). 740 

 741 

The advent of the MGS mission in 1997 permitted the first truly global-scale inventories and 742 

interannual monitoring surveys of geomorphic features and atmospheric phenomena, including 743 

DDs (Edgett and Malin 2000; Malin and Edgett 2001). MOC WA images typically have a 744 

lower spatial resolution than the best VO images (see Figure 10b), but their dramatically 745 

broader spatial and temporal coverage produced an unprecedented record of the martian surface 746 

and atmosphere. These images have been used to identify DDs ≥230 m in apparent height or 747 

width (here referred to as “large DDs”). In contrast, the MOC NA images sampled the surface 748 

at much higher resolution, revealing surface details to complement the context provided by 749 

MOC WA images (see Figure 10c). Although they occasionally captured “small DDs” (≥~28 m 750 

in width, ≥~170 m in height, as measured by Fisher et al. 2005), the small footprint of MOC 751 

NA images precluded sampling the likely DD population in a statistically significant way (see 752 

Table 2). DD studies using MOC images benefited from the spacecraft’s nearly polar orbit, 753 

which obtained images in the early afternoon when DDs commonly form (typically 13:00-754 

15:00), albeit at a cost of diurnal time coverage.  755 
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 756 

Fisher et al. (2005) searched MOC WA and NA images in nine broad regions on Mars (see 757 

Figure 11), greatly expanding on the Thomas and Gierasch (1985) survey. Their study areas 758 

spanned a broad range of elevation, latitude, and topographic relief, specifically targeting areas 759 

known to be sources of atmospheric dust storms (Hellas Planitia, Solis and Sinai Plana) and 760 

spacecraft landing sites (Meridiani Planum, Chryse Planitia). In MOC NA and red MOC WA 761 

images spanning ~1.25 MY from MYs 24-25 (1999-2001) in each study area, Fisher et al. 762 

(2005) tallied the number of images containing DDs into seasonal bins centered on each 763 

solstice and equinox. Depending on season and location, DDs were identified in 0% to 54% of 764 

the MOC WA images and 0% to 18% of the MOC NA images. The following year, Cantor et 765 

al. (2006) published a significantly more extensive survey of martian DDs across the entire 766 

planet, including all MOC NA and MOC WA images with spatial resolutions <500 m/px, 767 

spanning ~4.5 MY from MYs 23-27 (1997-2006). To investigate the likely seasonal 768 

dependence of DD formation rate, three monitoring sites were established in locations where 769 

DDs had frequently been observed, targeting red MOC WA images on a weekly to biweekly 770 

basis over the last ~3 MY of the survey (see Figure 11). Cantor et al. (2006) found 11,456 DDs 771 

in 0.4% of the inspected images; this work remains the most exhaustive DD imaging survey 772 

ever published. Attempts have been made at automating DD detection in MOC WA images 773 

(Gibbons et al. 2005; Yang et al. 2006), but full surveys of the image data set have yet to be 774 

completed. 775 

 776 

The MEX mission arrived at Mars in 2003, bringing the HRSC. This camera provides stereo 777 

color images with an image footprint area on the order of that of MOC WA, but with a spatial 778 

resolution only slightly lower than that of MOC NA (see Figure 10d). These images effectively 779 

span the gap in resolution between MOC WA and MOC NA images, although they are not 780 

obtained as regularly and thus do not provide as much detail on seasonal trends in DD activity. 781 

However, MEX’s orbit permits acquisition at a wider range of local times than MGS, providing 782 

more information on the diurnal pattern of DD activity. Stanzel et al. (2008) conducted a DD 783 

survey with HRSC images spanning ~1.3 MY from MYs 26-28 (2004-2006), partly 784 

overlapping in time with the MOC survey of Cantor et al. (2006). They focused on three 785 

targeted areas: Amazonis Planitia, Chryse Planitia, and Syria Planum, which were selected for 786 

their previous DD detections in orbiter and lander data. Stanzel et al. (2008) identified 205 787 

DDs, measuring their location as well as translational velocity, diameter, and height. The 788 

average measured DD diameter and height were 230 and 660 m, respectively, indicating that 789 
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the previous studies using MOC WA images were unable to capture DDs smaller than the mean 790 

size, highlighting the limitations of image resolution. 791 

 792 

THEMIS obtains images of the surface in both visible and thermal IR wavelengths. This data 793 

set is not optimal for a large-scale DD survey because 1) these images have a relatively low 794 

spatial resolution relative to other recent data sets (although it is significantly better than that of 795 

MOC WA), and 2) the sun-synchronous orbit typically passes over the surface with local times 796 

later than 16:00h, when diurnal DD activity has typically waned. As a result, there are only a 797 

few DD studies involving THEMIS images (Fisher et al. 2005; Cushing et al. 2005; Towner 798 

2009). However, the thermal signal of a DD on either Mars or Earth is rarely measured, and 799 

thus THEMIS IR images can provide valuable information regarding heat transfer between 800 

DDs and the surrounding air. Towner (2009) searched THEMIS VIS images from 20ºS-50ºN 801 

and from Ls=0-270º of MYs 27-28 for DDs, specifically targeting the northern hemisphere 802 

summer season (see Figure 10e). They found only 8 DDs in THEMIS VIS images with 803 

simultaneous THEMIS IR coverage; the small number of detections is likely a result of imaging 804 

times during the late afternoon (15:42-16:30). 805 

 806 

Recent studies of martian DDs have mainly used images from CTX, HRSC, HiRISE, and 807 

CRISM, often in combination. Each of these data sets has its own advantages, reflecting 808 

technological advancements over the last few decades (see Table 2). CTX images combine a 809 

relatively high spatial resolution similar to that of MOC NA but with an image footprint 810 

typically ~100x larger. HRSC images have a moderate spatial resolution, but they cover broad 811 

swath areas and produce multiple images that can be used to track DD motion. HiRISE images 812 

span only a small area, but they provide astonishing detail in color with image resolutions 813 

reaching to 25 cm/px; however, they are unsuitable for broad surveys. Some DD inventories 814 

have focused on specific regions, such as Arsia Mons (Reiss et al. 2009) and Amazonis Planitia 815 

(Fenton and Lorenz 2015); others specifically searched through temporally-overlapping image 816 

data sets to estimate DD velocities and lifetimes (Reiss et al., 2011b; 2014a). For example, 817 

Reiss et al. (2014a) compiled a global inventory of DDs using CRISM VNIR images in order to 818 

determine DD velocities through comparison with CTX and HiRISE images, which are 819 

typically obtained with temporal offsets within ~1 minute (see Sec. 3.2.5). These detailed 820 

studies step beyond simple descriptions of DD morphology and behavior, delving into DD 821 

dynamics and their relation to the CBL. 822 
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3.2.2 Spatial Patterns of DD formation 823 

To first order, DD occurrences are widespread across the surface of Mars. Cantor et al. (2006) 824 

found DDs at nearly all latitudes outside the polar regions, with detections ranging from 71.9ºS 825 

to 62.2ºN (see Figure 12). Similarly, Reiss et al. (2014a) identified DDs ranging from 68.4ºS to 826 

68.3ºN. Martian DDs appear to form over different kinds of terrain, as well as a wide range of 827 

surface Minnaert albedos ( ~0.11 to ~0.22; Cantor et al. 2007 reported a global mean of ~0.18).  828 

 829 

Despite their occurrence over a wide range of terrains, martian DDs are much more prevalent in 830 

some areas than in others. The most DD-prone region on the planet is northern Amazonis 831 

Planitia, a 2809 km diameter, low-lying basin centered on 197.09ºE, 25.75ºN. Of all surveyed 832 

DDs on Mars, Cantor et al. (2006) found that 7 out of 8 (87.5%) were located on this plain (see 833 

Figure 12). Fisher et al. (2005) found DDs in 32% of MOC WA and 12% of MOC NA images 834 

in Amazonis Planitia, whereas their other study sites averaged <1%. The high detection rate in 835 

Amazonis Planitia is likely biased because this area was an observational target for MOC WA; 836 

however, CRISM images also showed that DDs are numerous there, with 53% of all identified 837 

DDs located on this plain (Reiss et al. 2014a). It is likely a fortuitous combination of this 838 

exceptional abundance and VO high resolution image targeting that led to their initial discovery 839 

by Thomas and Gierasch (1985). In contrast, Stanzel et al. (2008) found only six Amazonis 840 

Planitia DDs in HRSC images. However, the HRSC images used in that study are not likely 841 

representative of the region: many of the images do not extend into the area most densely 842 

populated by DDs. Because of their relatively large size and frequent occurrence, DDs in 843 

Amazonis Planitia have been the target of much scrutiny (see Sec. 3.2.4). 844 

 845 

West of the Amazonis Planitia site, there is a minor center of DD generation in Arcadia 846 

Planitia, where Cantor et al. (2006) found 0.98% of the DDs in their survey and Thomas and 847 

Gierasch (1985) identified the only two DDs in their survey that were not located in Amazonis 848 

Planitia. Otherwise, Fisher et al. (2005) and Cantor et al. (2006) found that both large and small 849 

DDs are fairly uncommon in both MOC WA and NA images in the northern hemisphere (see 850 

Figure 12). However, approximately half of the DDs identified by Stanzel et al. (2008) were 851 

located in southern Chryse Planitia, although Fisher et al. (2005) and Cantor et al. (2006) found 852 

few MOC images with DDs in this area. Stanzel et al. (2008) attributed this high DD density to 853 

the low elevation (and thus high air pressure) of Chryse Planitia, coupled with channeled air 854 

flows down Simud Vallis (an ancient outflow channel that flowed northward into Chryse 855 

Planitia). The spatial patterns of DD production zones on Mars (most notably those of 856 
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Amazonis and Chryse Planitiae) vary more from one spacecraft mission to another than they do 857 

from interannual observations. These disparities are likely created by differences in the sampled 858 

locations, local times, seasons, and imaging spatial resolutions of each mission, indicating that 859 

no single instrument is perfectly suited to monitoring all degrees of DD activity over all regions 860 

on Mars. 861 

 862 

The MOC and HRSC surveys found that in the southern hemisphere, large DDs were 863 

concentrated in the high-standing Solis, Syria, Thaumasia, and Sinai Plana (with elevations 864 

>~3 km), as well as in Noachis Terra (located west of Hellas Planitia, with elevations ~1-2 km). 865 

In contrast to the clustered production zones of the north, the MOC surveys found that small 866 

southern hemisphere DDs are more widely distributed, with a slight concentration in the low-867 

lying Hellas Planitia (elevation <~-4 km). The difference in small vs. large southern DDs also 868 

appears in their latitudinal distribution, in which large DDs are uncommon south of ~50ºS, but 869 

smaller DDs are well-distributed down to ~70ºS. The HRSC survey found a relatively high 870 

density of DDs from 50-60ºS, matching the high density of DD tracks in the same area found 871 

by Whelley and Greeley (2008). Showing consistency with the MOC surveys, these HRSC 872 

DDs were typical in size compared to others found elsewhere in that study (100-500 m in 873 

diameter), but none were as large as the towering dust columns of the high plateaus and 874 

Amazonis Planitia (i.e., few exceeded heights of 1 km). Stanzel et al. (2008) attributed this 875 

southern midlatitude activity to the enhanced southern summer insolation relative to that in the 876 

northern hemisphere, caused by Mars’ eccentric orbit. However, it is not clear what process 877 

would create large DDs in some areas but not in others. 878 

 879 

Fisher et al. (2005) and Cantor et al. (2006) observed DDs at elevations on Mars ranging from 880 

the deepest basin (<-6 km) to the highest plateaus (>7 km). However, the DD distribution with 881 

elevation does not follow a simple trend: larger DDs are more prevalent at higher elevations 882 

and (with the exception of Amazonis Planitia) smaller DDs are more prevalent at lower 883 

elevations; this is the result of the clustering on the southern tropical Plana and in Hellas 884 

Planitia discussed above. Cantor et al. (2006) attributed the abundance of small DD 885 

observations at low elevation to a correspondingly higher air pressure, in which the threshold 886 

conditions for particle entrainment are reduced relative to those elsewhere on Mars. Thus, 887 

vortices need not be so intense to entrain dust at lower elevations, so that a higher proportion of 888 

the more common, weaker vortices become visible. In turn, the large DDs at high elevation 889 

could be created by a relatively deep CBL (Hinson et al., 2008; Spiga et al., 2010) accompanied 890 
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by strong updrafts (Spiga and Lewis, 2010), which could in turn produce taller DDs (Fenton 891 

and Lorenz, 2015). 892 

 893 

There are many locations on Mars where DD production appears to be enhanced by local 894 

conditions. Cantor et al. (2006) noted that DDs are more common near the boundaries of 895 

contrasting albedo features, which are known to generate vortices in terrestrial field studies 896 

(Snow and McClelland 1990; Renno et al. 2004). In some cases, DDs cluster in groups or align 897 

in rows (Biener et al. 2002; Fisher et al. 2005; Stanzel et al. 2006; Fenton and Lorenz 2015). It 898 

is possible that some surface factor, such as a roughness element or albedo contrast, locally 899 

enhances DD production in these locations. Stanzel et al. (2006) proposed that DDs might form 900 

along an air mass boundary, similar to those that been observed on Earth (e.g., Markowski and 901 

Hannon 2006). Alternatively, Fenton and Lorenz (2015) proposed that these regularly-spaced 902 

DDs could instead denote vertices of intersecting convection cells, where DDs are most likely 903 

to form. Many such scenarios are possible. 904 

 905 

Despite many years of continued monitoring from orbit and landed missions, there have been 906 

no simultaneous observations of DDs both from above and on the ground. Despite a dedicated 907 

imaging campaign by MGS MOC, no DDs were identified from orbit that were within the same 908 

fields of view as the MER Spirit and Opportunity cameras (Cantor et al. 2006). This result is 909 

consistent with the lack of DD detection in Opportunity images (Greeley et al. 2010). However, 910 

Greeley et al. (2006) found 533 DDs in Spirit images during the most complete monitoring 911 

season in MY 27 (2005). These DDs were typically 10-20 m in diameter, with only a few large 912 

enough to have been resolved in MOC WA images. A similar attempt was made to coordinate 913 

observations from HRSC with Spirit rover images (Stanzel 2007). However, once again, no 914 

DDs were captured from orbit, as a result of mismatching fields of view with the rover and 915 

differences in the image acquisition times. The smallest DDs imaged by HRSC were ~50 m in 916 

diameter, so that the most abundant size range observed from Spirit is still not resolved by the 917 

newer camera in orbit. This disconnect between orbital and landed surveys has made it difficult 918 

to use orbital observations of DDs to make quantitative assessments of conditions at the 919 

surface. 920 

 921 
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3.2.3 Temporal patterns of DD formation 922 

All martian DD surveys indicate that, like their terrestrial counterparts, they most frequently 923 

form when insolation is near its seasonal and diurnal maximum. HRSC images, obtained at a 924 

range of local times, show that DDs across the martian surface form from noon through the 925 

afternoon, with peak hours between ~14:00-15:00 (Stanzel et al. 2008). DDs were rarely seen in 926 

THEMIS images, which were obtained from ~15:00-17:30, indicating that the circulations that 927 

produce these vortices typically shut down by midafternoon (Cushing et al. 2005; Fisher et al. 928 

2005; Towner 2009). These observations are consistent with diurnal DD activity observed from 929 

the surface (e.g., Greeley et al. 2006). 930 

 931 

On a seasonal timescale, Cantor et al. (2006) found that DD numbers reached a maximum 932 

during Ls=145-150º in the northern hemisphere and at Ls=305-310º in the southern hemisphere 933 

(i.e., local summer), although some studies have identified DDs during other seasons – even 934 

during local winter (e.g., Fisher et al. 2005; Cantor et al. 2006; Stanzel et al. 2006; Stanzel et al. 935 

2008; Fenton and Lorenz 2015). All of the global-scale surveys found that the seasonal DD 936 

distribution is sensitive to latitude, such that terrains at higher latitudes are less likely to 937 

produce DDs during local winter. For example, Cantor et al. (2006) found no DDs within half 938 

of a season surrounding the local winter solstice poleward of 50º in either hemisphere 939 

(particularly in the north). In contrast, they found that lower latitudes have two seasonal DD 940 

peaks, centered near either solstice. In the latitudinal zone 0-30ºS, Cantor et al. (2006) found 941 

that DDs formed year-round, mainly as large DDs on the high plateaus of Solis, Syria, 942 

Thaumasia, and Sinai Plana.  943 

 944 

Interannual variability superposed on the seasonal trend of DD activity is often linked to the 945 

occurrence of dust storms. Cantor et al. (2006) found that dust storms can influence DD 946 

production; most notably, that DDs have not been observed from orbit in the midst of dust 947 

storms. This is generally thought to be caused by a less strongly superadiabatic temperature 948 

profile near the ground, as a result of increased atmospheric heating aloft (from suspended dust 949 

absorbing solar radiation) and decreased atmospheric heating of the surface (from less solar 950 

radiation reaching the ground). However, the increase in atmospheric optical depth during dust 951 

storms also reduces image contrast, making DDs more difficult to identify: if they were present 952 

under the dust haze, they would be harder to spot. Because of these factors, DD observations 953 

are generally anti-correlated with dust events. For example, Cantor et al. (2006) noted that the 954 
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onset of summertime DDs in the southern midlatitudes (40-70º S) appears to be delayed until 955 

southern spring dust storms abate.  956 

 957 

Despite the general anti-correlation with dust storms, the detailed interaction of DD activity 958 

with weather fronts is often more complex. DDs are often seen in front of the leading edge of 959 

dust storms, indicating that mechanical turbulence from storm fronts produces vortices that are 960 

vigorous enough to entrain dust (Cantor et al. 2006; Stanzel et al. 2008). In some cases, Cantor 961 

et al. (2006) showed that the same storm may trigger DD production in one stage of its 962 

evolution, and suppress DD activity in another stage. For example, the MY 25 (2001) global 963 

dust event during southern spring and summer (see Figure 7) may have caused a short spike in 964 

DD activity during northern autumn in Amazonis Planitia as a dust haze layer associated with 965 

the expanding storm passed overhead. However, as the same storm slowly decayed a few 966 

months later, the dust-laden atmosphere appears to have delayed the start of the southern 967 

summer DD season in Syria Planum by 40º of Ls relative to the following two years.  968 

 969 

Loose dust on the surface (i.e., that which has been transported and then deposited in the wake 970 

of dust storms) can also modulate DD production rates by changing the surface albedo. For 971 

example, Cantor et al. (2006) investigated the passage of a series of late winter dust storms over 972 

MER Spirit in 2005 (MY 27, Ls = 170-173º). These storms produced strong winds that removed 973 

surface fines, reducing the albedo of dark surface areas by 10-14% and forming new dark 974 

surface features that contrasted with surrounding bright terrain by 12-18%. Despite a dedicated 975 

MOC WA imaging campaign to observe weather patterns in the vicinity of Spirit, Cantor et al. 976 

(2006) found that only one such image captured DDs (in MY 27, Ls = 264.7º): they were 977 

located near the margins of the newly-darkened ground a few months after the storms, during 978 

the peak of the DD season (unfortunately they were too far from Spirit to be visible from the 979 

ground).  980 

 981 

Both planet-encircling dust storm activity and surface albedo patterns vary in degree and 982 

location from one year to the next, influencing the timing of and possibly the density of DD 983 

production. It is likely that DD activity could be predicted based on the occurrence of 984 

interannually-varying storms and their resulting albedo patterns. It is also possible that longer-985 

term changes in the martian climate system affect DD formation rates, as well as their 986 

efficiency in lifting dust. For example, Cantor et al. (2006) predicted that the subtle change in 987 
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insolation during the 11 year solar cycle could also impact DD formation rates, although no 988 

studies have yet sought to test this hypothesis. 989 

3.2.4 DD observations at specific locations 990 

3.2.4.1 Northern Amazonis Planitia 991 

Northern Amazonis Planitia is far and away the dominant producer of both large and small DDs 992 

on Mars. Figure 13 shows that there is a regularly-occurring active (“on”) season that typically 993 

begins with sporadic activity just prior to the northern spring equinox and extends until just past 994 

the northern autumn equinox (Cantor et al. 2002; Fisher et al. 2005; Cantor et al. 2006, Fenton 995 

and Lorenz 2015). DDs generally do not form during the rest of the year (the “off” season), 996 

although Fenton and Lorenz (2015) reported a few isolated cases during late fall and early 997 

winter. Superposed on the seasonal pattern is a higher frequency variation in DD density on the 998 

order of 5-10º Ls, possibly related to regional weather patterns (e.g., dust storms and fronts) that 999 

might briefly enhance or suppress DD formation. 1000 

 1001 

Figure 13 shows that the DD “on” seasons during Mars Years 26 (2002) and 27 (2004) in 1002 

Amazonis Planitia experienced a gradual growth in activity, peaking at MOC WA densities of 1003 

~2x10
-3

 DD/km
2
 at Ls~140º (Fisher et al. 2005; Cantor et al. 2006). A survey of the same 1004 

region using CTX images from MYs 28-31 (2006-2013) produced density peaks of ~8x10
-3

 1005 

DD/km
2
 (Fenton and Lorenz 2015); this relatively high density reflects the increase in spatial 1006 

resolution of CTX images versus that of MOC WA images rather than any interannual variation 1007 

(see Table 2). Fenton and Lorenz (2015) observed no similar growth in activity during northern 1008 

spring and summer in MYs 29-31 (2007-2011), contrasting with the trend in MYs 26-27 (2002-1009 

2004). It is not yet clear whether this behavior is only apparent in MOC WA images or 1010 

interannual variations have affected the DD production rate.  1011 

 1012 

The most significant departures from the “on vs. off” seasonal trend in Amazonis Planitia 1013 

appear in MYs 25 (2001) and 27 (2004), when DD production appears low late in summer 1014 

(MOC WA densities <1x10
-3

 km
2
). The low DD occurrence in MY 25 occurs long before the 1015 

onset of the MY 25 global dust event (just after northern autumn solstice), and therefore this 1016 

lull in activity is unlikely to be related to this storm. Fisher et al. (2005) attributed the weak DD 1017 

activity in MY 25 to low image exposures early in the MGS mission, making features less crisp 1018 

(and thus DDs more difficult to identify). Unfortunately no MOC WA images of the area earlier 1019 

during the “on” season in MY 25 are available for comparison, leaving this problem 1020 
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unresolved. The early drop in DD production during the late summer of MY 27 (Ls~155º) 1021 

occurred as dust haze from a global-scale dust event passed over Amazonis Planitia, following 1022 

the general trend that high altitude dustiness suppresses DD production by increasing the 1023 

stability of the lower CBL. 1024 

 1025 

It is not immediately apparent why DD production rates in northern Amazonis Planitia are so 1026 

high relative to the rest of the planet. By treating the lower atmosphere as a heat engine, the 1027 

intensity of DD production can be represented as a function of the pressure thickness of the 1028 

convective boundary layer (Rennó et al. 1998). When using this relation to create a 1029 

parameterization of dust lifting by DD activity in martian atmospheric models (such as GCMs), 1030 

Amazonis Planitia stands out as a major source of atmospheric dust (Newman et al. 2002a; 1031 

Basu et al. 2004; Kahre et al. 2006). This appears to be caused by the low thermal inertia of the 1032 

surface, which allows the daytime surface temperature in Amazonis Planitia to soar (e.g., 1033 

Putzig et al. 2005). However, data from TES indicate that there are other regions on Mars with 1034 

equally high summertime surface temperatures, similarly deep CBLs, and comparable sensible 1035 

heat fluxes, but these regions do not produce correspondingly high densities of DDs (Fisher et 1036 

al. 2005). It is possible that yet unidentified local and regional factors, such as dust availability 1037 

or albedo/thermal inertia contrasts in the vicinity of the high DD density region, constructively 1038 

interfere to enhance DD production in Amazonis Planitia.  1039 

 1040 

3.2.4.2 Syria and Eastern Meridiani Plana 1041 

Being located not far south of the equator, Cantor et al. (2006)’s Syria Planum monitoring site 1042 

(see Figure 11) experienced two seasonal peaks in DD production, one at each solstice. The 1043 

southern winter peak is the stronger of the two, lasting from Ls=109-132º, with typical MOC 1044 

WA densities exceeding 1.5x10
-3

 DD/km
2
. The slightly weaker southern summer peak ranged 1045 

from Ls=265-315º, with MOC WA densities less than 1.5x10
-3

 DD/km
2
. It is not clear why the 1046 

winter peak would be more intense than the summer peak, as the insolation during winter 1047 

would be less than that during summer. Perhaps some dynamical effect from the nearby Tharsis 1048 

volcanoes somehow plays a role in producing conditions conducive to DD formation. Further 1049 

investigation with data from subsequent years might provide clues (or at least better statistics) 1050 

to address this question. 1051 

 1052 

Like its northern counterpart in Amazonis Planitia, Syria Planum experienced some interannual 1053 

variability in DD activity (Cantor et al. 2006). In the two full years of monitoring in Syria 1054 
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Planum during MY 26-27 (2002-2005), the second year’s winter season was slightly more 1055 

active, although the reason for this is not known. In both years, the winter DDs stopped 1056 

abruptly after Ls~135º; in the case of MY 27 this shutdown may be related to the occurrence of 1057 

a planet-encircling dust storm. The summer DD season onset in MY 25 was delayed by ~40º of 1058 

Ls relative to those in MYs 26 and 27, likely as a result of the extensive MY 25 global dust 1059 

event. 1060 

 1061 

Cantor et al. (2006)’s monitoring site in Meridiani Planum experienced a lower rate of DD 1062 

formation than the other two sites, although (perhaps because of this) it was not monitored as 1063 

frequently. DDs at this nearly equatorial site were found nearly year-round, with a short 1064 

southern winter break from Ls~130-190º. A slight peak in southern summer activity occurred 1065 

from Ls=272.5-302.5º, with maximum MOC WA densities less than ~1.4x10
-3

 DD/km
2
. An 1066 

enhancement during late southern summer in MY 27 (2005) relative to that in MY 26 (2004) 1067 

was attributed to local dust storm activity that may have deposited or abraded a source of dust 1068 

for entrainment. 1069 

 1070 

3.2.4.3 Arsia Mons 1071 

Surprisingly, DDs have been identified at elevations exceeding 16 km above the datum. 1072 

Cushing et al. (2005) was the first to report the occurrence of 3 DDs in the Arsia Mons caldera 1073 

in THEMIS VIS and IR images, and Cantor et al. (2006) identified 3 in MOC WA images. In a 1074 

search of MOC NA, MOC WA, THEMIS VIS, HRSC, and CTX images, Reiss et al. (2009) 1075 

found 28 DDs, 11 of which formed at elevations >16 km; most of these formed in the caldera. 1076 

The DDs on Arsia Mons appear to form year-round, although there is a peak in activity during 1077 

late local summer from Ls=340-360º. The air pressure at this altitude is ~1 mbar, six times 1078 

lower than the global annual average surface air pressure, and wind stresses required to directly 1079 

lift dust are 2-3 times higher than those found at the surface. Although it may seem unlikely 1080 

that dust-laden vortices could form in such a sparse atmosphere (indeed, many Earth 1081 

researchers might have supposed the same of any location on Mars prior to their discovery), the 1082 

direct observations and many bright tracks attest to their profusion on the caldera floor.  1083 

 1084 

It is not clear how DDs form and entrain dust at the top of this tall volcano, but it is notable that 1085 

they have not been reported at the tops of the other, equally tall Tharsis volcanoes. Reiss et al. 1086 

(2009) proposed that the illumination of a dusty surface at low air pressure enhances 1087 

entrainment through a combination of a thermophoretic force and solid state greenhouse effect. 1088 



34 

Comparing mesoscale and large eddy simulations at different elevations on Mars, Spiga and 1089 

Lewis (2010) suggested that winds produced by convective activity are relatively stronger at 1090 

high elevation, enhancing the likelihood of DD formation on Arsia Mons (Lorenz and Myers 1091 

(2005) proposed that a similar effect on Earth may contribute to more DD-related aviation 1092 

incidents at high elevation in the United States). In addition, their occurrence late in the 1093 

afternoon (~15:00-16:00) in THEMIS VIS images is rare on Mars (e.g., Fisher et al. 2005; 1094 

Stanzel et al. 2008), so that mechanical turbulence from some local factor (e.g., the 110 km 1095 

wide, smooth caldera floor surrounded by steep cliffs ~1 km high) may be required to trigger 1096 

DD generation at this altitude and local time. 1097 

 1098 

In addition to DDs, Arsia Mons is also host to a 50 km wide “spiral dust storm” that regularly 1099 

forms in late southern winter, shortly before the southern spring equinox (see Figure 14; Malin 1100 

et al. 2010). Mesoscale model simulations by Rafkin et al. (2002) suggest that this storm is part 1101 

of a larger thermally-driven circulation up the slopes of Arsia Mons that reaches ~30 km above 1102 

the caldera; the dust is derived from the lower slopes of the volcano and carried aloft by 1103 

daytime upslope winds that can exceed 25 m/s. Recent observations from MCS indicate that 1104 

detached dust layers are common at this season over the Tharsis volcanoes, at altitudes higher 1105 

(~65 km) and with mass mixing ratios higher (~150 ppm) than previously modeled (Heavens et 1106 

al. 2015). This study suggests that daytime slope winds racing up the high-relief Tharsis 1107 

volcanoes force the terrain to serve as a chimney, transporting dust to high altitudes. Although 1108 

this mechanism is driven by mesoscale circulations, which are not a major topic of this review, 1109 

it is possible that these slope winds bring the dust, and possibly the mechanical turbulence, that 1110 

is responsible for DD generation in the Arsia Mons caldera.  1111 

 1112 

3.2.5 Physical Characteristics of DDs 1113 

3.2.5.1 Dimensions 1114 

DD dimensions have been measured from orbital image data from several missions (Thomas 1115 

and Gierasch 1985; Fisher et al. 2005; Stanzel et al. 2006; 2008; Towner 2009; Choi and 1116 

Dundas 2011; Reiss et al. 2011b; 2014a; 2014b; Fenton and Lorenz 2015; see also Table 4). 1117 

The diameter is usually determined by measuring the visible extent of the dust-laden columnar 1118 

vortex, although in some cases the extent of the vortex shadow width was used (e.g., Fisher et 1119 

al. 2005). The uncertainty in measuring DD diameter from orbital imagery depends on the 1120 

spatial ground resolution of the image data. For example, Stanzel et al. (2008) observed a DD 1121 
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in a HRSC nadir image with a spatial ground resolution of 25 m/px which was simultaneously 1122 

imaged by the HRSC SRC camera with a spatial ground resolution of 5 m/px, obtaining 1123 

diameters of 90 m versus 42 m, respectively. This suggests that errors in measuring DD 1124 

diameters from orbit can be quite large (up to ~50 %) due to dust clouds surrounding the 1125 

vortex, causing uncertainties in accurately determining the dust-laden vortex diameter. 1126 

However, DD diameters measured with higher resolution image data are more accurate.  1127 

 1128 

DD heights are calculated by measuring the shadow length and dividing it by the tangent of the 1129 

solar incidence angle. There are several uncertainties for accurate measurements of shadow 1130 

lengths, such as detached dust clouds and diffuse shadows. In addition, DDs are not necessarily 1131 

vertical; they are typically tilted towards the direction of motion (i.e., downwind) with height 1132 

(e.g., McGinnigle 1966; Maxworthy 1973). Thus, the error in measuring DD heights is 1133 

estimated to be between ~20 to ~30 % (e.g., Reiss et al. 2014a; Fenton and Lorenz 2015). The 1134 

accuracy in measuring heights is probably higher for relatively short DD, which exhibit sharper 1135 

shadows (Fenton and Lorenz 2015). In 2012, the HiRISE team announced the tallest recorded 1136 

DD, with an estimated height of 20 km (http://www.uahirise.org/ESP_026394_2160; this DD is 1137 

also shown in Figure 10f and 10g). Fenton and Lorenz (2015) proposed that this height is an 1138 

overestimate, produced by a combination of DD lean and shear by winds aloft, both of which 1139 

would artificially stretch the dust column and make it appear taller. Imagers are not the only 1140 

sensor that can estimate DD height: some DDs may have been dense enough to trigger returns 1141 

in MOLA data (Neumann et al. 2003), raising the question of whether terrestrial lidars such as 1142 

CALIOP have been able to detect convectively-lofted dust. 1143 

 1144 

Table 4 summarizes orbital measurements of DD dimensions obtained by different instruments. 1145 

DD diameters range between 10 and 1650 m and heights between 0.03 and 16.5 km. Fisher et 1146 

al. (2005), Stanzel et al. (2006; 2008), Towner (2009), Choi and Dundas (2011), and Reiss et al. 1147 

(2011b; 2014a; 2014b) provided detailed information about simultaneously measured DD 1148 

diameters and heights. Based on this data set of about 300 measurements, average diameters 1149 

and heights are 220 m and 0.63 km (median = 160 m and 0.45 km), respectively. Error! 1150 

Reference source not found. shows a plot of measured DD dimensions, showing a general 1151 

correlation of height and diameter. However, the wide scattering of the measurements also 1152 

indicates that there is no clear analytical relationship between these two dimensions. This is not 1153 

surprising, considering the large variety in DD morphologies (Balme and Greeley, 2006; see 1154 

also Chapters 5 and 6). DD height-to-diameter ratios, based on the data shown in Error! 1155 
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Reference source not found., range from ~0.5 to 28 with a mean of 3.8 (median = 2.5). This 1156 

ratio is in broad agreement with the terrestrial and martian median height-to-diameter ratio of 1157 

~5 reported by Lorenz (2013), based on the studies by Flower (1936) and Fisher et al. (2005). 1158 

 1159 

The minimum detectable DD diameter is dependent on the spatial ground resolution of each the 1160 

orbital camera. At least two to three pixels are needed to resolve a DD, including any 1161 

surrounding dust clouds. Thus DDs with diameters <~500 m are not identifiable in MOC WA 1162 

images with spatial ground resolutions of ~230 m/px, whereas detection of DDs with diameters 1163 

as small as~1m is theoretically possible in HiRISE imagery, with spatial ground resolutions of 1164 

up to 0.25 m/px (although the smallest observed diameter in HiRISE to date is ~10 m). In 1165 

general, orbital image data reveals larger DDs in comparison to those identified in lander 1166 

observations. Greeley et al. (2010) observed ~760 DDs in images taken from MER Spirit on the 1167 

martian surface, with diameters ranging between 2 and 276 m; the median diameter was 30 m, 1168 

more than 5x smaller than that obtained from orbital camera images.  Full DD heights from 1169 

lander images could only be determined for 44 DDs (most extended beyond the top of the 1170 

images), which ranged from 0.01 to 0.36 km (Greeley et al. 2006), compared to 0.03 to 16.5 km 1171 

from orbital data. 1172 

 1173 

DDs on Mars can be orders of magnitude larger than terrestrial ones. On Earth, in situ 1174 

measurements of DD diameters and heights are typically in the range of ~1 to < 100 m and 1175 

~0.01 to < 1.2 km, respectively (Flower 1936; Williams 1948; Sinclair 1965; Snow and 1176 

McClelland 1990; Mattson et al. 1993). However, Bell (1967) and Sinclair (1964) reported DDs 1177 

as high as 2.5 km and 3.8 km, respectively. Although the typical size ranges of terrestrial DDs 1178 

are comparable to those observed at martian landing sites, the diameters and heights obtained 1179 

with orbital instruments imply that DDs on Mars can be several orders of magnitude larger. The 1180 

lack of DD detections in terrestrial satellite imagery also suggests that DDs on Earth are smaller 1181 

in size. This discrepancy might be caused by differences in the PBL on both planets, which 1182 

limits the height extent of convective vortices. The CBL depth on Earth over land is usually 1183 

below 2-3 km (e.g., Garratt, 1994), in contrast to Mars, which typically has CBL depths 1184 

between 4 and 10 km (Hinson et al. 2008). Fenton and Lorenz (2015) analyzed seasonal DD 1185 

height and PBL variations in Amazonis Planitia on Mars. They found that median DD heights 1186 

are generally about 0.2 × PBL depth, in agreement with terrestrial studies (Willis and Deardorff 1187 

1979; Hess and Spillane 1990; Ansmann et al. 2009) comparing DD heights with that of the 1188 

CBL. The difference in DD heights on Mars and Earth is likely caused by “a greater solar 1189 
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energy (absorbed by the surface) to atmospheric mass ratio on Mars (tens of times greater than 1190 

that on Earth), providing martian DDs with a more effective power source” (Kok et al. 2012). It 1191 

is not yet clear whether DD dimensions on Earth correlate with length scales in the terrestrial 1192 

PBL. 1193 

 1194 

3.2.5.1 Translational ground speeds 1195 

Dynamic processes on Mars can be captured by orbital instruments or platforms acquiring time-1196 

delayed imaging data of the same surface area. Hence, the horizontal ground speed and 1197 

direction of motion of DDs translating across the surface can be directly measured when 1198 

imaged by such datasets. For example, Cantor et al. (2006) used two VO images taken 5 s apart 1199 

from each other, which showed the same DD in the overlapping area of the two images. The 1200 

DD moved ~880 m towards the northeast across the surface in the time between the two image 1201 

observations, resulting in a horizontal ground speed of 17.6 ± 2.6 m s
-1

 (Cantor et al. 2006). 1202 

However, such observations in acquired image pairs of frame cameras are rare, because the 1203 

overlapping areas required to contain the same DD are relatively small. The unique imaging 1204 

capabilities of the HRSC pushbroom instrument (Jaumann et al. 2007; Gwinner et al., 1205 

submitted to Icarus) allow systematic measurements of DD translational ground speeds. The 1206 

HRSC consists of nine line sensors simultaneously acquiring superimposed image swaths of the 1207 

martian surface. The different emission angles (+18.9° to -18.9°) of each of the nine image 1208 

channels result in a time delay at which the same surface area is covered. The maximum time 1209 

delay between the outermost forward- and backward-looking image channels is about one 1210 

minute. Stanzel et al. (2006; 2008) measured translational ground speeds of 205 DDs using 1211 

HRSC images, with results ranging between 1 and 59 m s
-1

, and a mean of 13 m s
-1

 (median: 1212 

10.4 m s
-1

). Reiss et al. (2011b) measured translational ground speeds of an additional 26 DDs 1213 

in HRSC images, which ranged between 3 and 22 m s
-1

, with a mean of 12 m s
-1

 (median: 11.1 1214 

m s
-1

) in the Syria-Claritas region on Mars.  1215 

 1216 

Another method of systematically obtaining DD translational ground speeds was recently 1217 

introduced by Reiss et al. (2014a) using the CRISM imaging spectrometer in combination with 1218 

the CTX and/or HiRISE cameras, which are all located on the same instrument platform 1219 

onboard MRO (see Table 2). The CRISM instrument uses an active pointing system for 1220 

tracking targets with long exposure times (Murchie et al. 2007). The center of a surface target is 1221 

imaged by forward- and backward-looking angles in the flight direction, in contrast to the 1222 

exclusively nadir-looking angles of the CTX and HiRISE instruments, resulting in positive and 1223 
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negative time offsets of ~±1 minute between the CRISM and CTX/HiRISE surface 1224 

observations. Using this method, Reiss et al. (2014a) measured translational ground speeds of 1225 

44 DDs, which ranged from 4 - 25 m s
-1

 with a mean of 12 m s
-1

 (median: ~11.5 m s
-1

).  A 1226 

further method measuring DD translational ground speeds is the usage of the HiRISE blue-1227 

green, red, and infrared color swaths, which cover the same surface area with a time delay of 1228 

~0.1 seconds. However, such measured horizontal ground speeds should be seen as an estimate 1229 

due to the very short time interval between the color swaths, which introduces significant 1230 

uncertainties. Choi and Dundas (2011) and Reiss et al. (2014b) estimated DD translational 1231 

ground speeds in the range of ~5-20 m s
-1

 using HiRISE color swaths. 1232 

 1233 

The comparison of some DD translational ground speeds and directions of motion with 1234 

predicted wind speeds and directions from the Mars Climate Database (MCD; Forget et al. 1235 

1999) indicated that DDs move with speeds and in directions of the ambient wind field (Stanzel 1236 

et al. 2006; 2008). A systematic study comparing measured DD translational ground speeds and 1237 

directions of motion with MCD-predicted wind speeds and directions at various heights by 1238 

Reiss et al. (2014a) showed that DDs on Mars move with ambient wind fields and with ground 1239 

speeds commensurate with those at height within the PBL, hence faster than near-surface 1240 

winds. This is in agreement with terrestrial in situ studies by Balme et al. (2012), who 1241 

compared measured DD translational ground speeds and directions of motion with wind and 1242 

direction measurements at 10 m height. They found that DDs move at speeds and in directions 1243 

reflecting the ambient wind field within the PBL at about 20-30 m above the surface (Balme et 1244 

al. 2012). As pointed out by Balme et al. (2012) and shown by Reiss et al. (2014a), orbital 1245 

measurements of DD translational ground speeds and directions of motion can therefore be 1246 

used as a proxy for local regional wind regimes within the PBL on Mars.  1247 

 1248 

Table 5 summarizes horizontal ground speed measurements from both orbiting and landed 1249 

missions on Mars. Greeley et al. (2010) measured horizontal ground speeds of nearly 500 DDs 1250 

at the MER Spirit landing site in Gusev crater based on time sequential lander images. 1251 

Although the range of translational ground speeds of the large dataset obtained by Greeley et al. 1252 

(2010) is in agreement with orbitally-derived ranges of DD translational ground speeds, the 1253 

median speeds are lower than those measured from orbit. Because orbital data can only resolve 1254 

larger DDs, in contrast to lander missions, this might suggest that larger DDs move faster. 1255 

However, neither the orbital nor landing site nor even terrestrial data sets have found a 1256 

relationship between translational ground speeds and DD diameter (Stanzel et al. 2008; Greeley 1257 
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et al. 2010; Balme et al. 2012; Reiss et al. 2014a). This implies that the differences between the 1258 

globally-derived orbiter and locally-obtained lander results are reflecting differences in global 1259 

and local wind regimes on Mars. 1260 

 1261 

3.2.5.2 Tangential velocities 1262 

The threshold friction velocity required to directly entrain surface dust into the thin martian 1263 

atmosphere is estimated to be ~30 m s
-1

 (Greeley and Iversen 1985). Thus measurements of 1264 

tangential velocities provide a first order estimate of the intensity of DDs and their capacity to 1265 

lift dust from the martian surface, although many other mechanisms are suggested to lower the 1266 

threshold friction velocity for dust lifting by DDs on Mars and Earth (see Chapters 10 and 11).  1267 

Measurements of tangential velocities from orbit are rare, because multiple satellite images 1268 

taken of the same DD within a short time period are needed. In addition, contrast features in the 1269 

DD cloud must be visible for measuring the displacement between the image observations. 1270 

Cantor et al. (2006) measured a tangential velocity of 14.1 ± 0.3 m s
-1 

in the outermost visible 1271 

part of a DD, with a diameter of ~370 m and a height of ~900 m, from two VO images taken 5 1272 

seconds apart. Choi and Dundas (2011) used the blue-green, red, and infrared central color 1273 

swaths of the HiRISE camera, taken 0.1 seconds apart, to automatically track contrast features 1274 

in four DDs with diameters between ~25 and 250 m and heights between ~150 and 650 m. 1275 

Their wind vector measurements yielded typical tangential velocities approaching ~20 and 30 1276 

m s
-1

, with maximum velocities reaching ~45 m s
-1

. The strongest tangential velocities in all 1277 

DDs occurred along the outer edge of the visible dust columns (Choi and Dundas 2011). 1278 

 1279 

Terrestrial in situ measurements by Sinclair (1973) and laboratory studies by Greeley et al. 1280 

(2003) of DD velocities are in good agreement with a Rankine vortex model, in which the core 1281 

exhibits solid body rotation and tangential velocities linearly increase with radius r, reaching a 1282 

peak outside the radius, and then decreasing as a function of r
-1

. A radial profile of one DD 1283 

measured by Choi and Dundas (2011) was in good agreement with the Rankine vortex model, 1284 

but another one decreased as a function of r
-1/2

 instead of r
-1

 outside the solidly rotating central 1285 

region (Choi and Dundas 2011). A velocity profile closer to the r
-1/2

 distribution was also 1286 

measured in situ on Earth by Tratt et al. (2003) and attributed to nonconservation of angular 1287 

momentum caused by frictional losses near the surface (Tratt et al. 2003; Balme and Greeley 1288 

2006). For further discussion of vortex models used to describe DDs, we refer the reader to 1289 

Chapter 6. 1290 
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 1291 
Table 6 summarizes tangential velocity measurements of DDs by orbital instruments on Mars, 1292 

by in situ measurements on Earth, and by modeling approaches based on in situ measurements 1293 

for Mars.  The tangential velocities of DDs on Mars measured from orbit by Choi and Dundas 1294 

(2011) are about two to three times higher than terrestrial peak tangential velocities measured in 1295 

situ by Ryan and Carroll (1970), Fitzjarrald (1973), Sinclair (1973), Metzger (1999), Tratt et al. 1296 

(2003), and Metzger et al. (2011). One reason for this discrepancy might be that the martian 1297 

orbital measurements are from large and relatively intense DDs (>50 m in diameter), whereas 1298 

terrestrial measurements mainly sample smaller DDs (<10 m in diameter). The largest data set 1299 

provided by Ryan and Carrol (1970) indicated that larger DDs are more intense, exhibiting 1300 

greater tangential velocities (Balme and Greeley, 2006). The disparity between orbital 1301 

measurements of martian DD tangential velocities and those measured in situ on Earth is yet 1302 

another example of the disconnect in understanding between orbital and surface observations of 1303 

DDs. 1304 

 1305 

Tangential velocities are related to the pressure drop across the vortex by assuming 1306 

cyclostrophic balance (Rennó et al. 1998). For further details we refer the reader to Renno et al. 1307 

(1998) and Chapters 6 and 10. Tratt et al. (2003) applied this method to two terrestrial DDs 1308 

passing directly over the instruments and observed a good agreement between measured and 1309 

calculated tangential velocities. Theoretically-calculated minimum tangential velocities for 1310 

DDs on Mars by Rennó et al. (2000) using meteorological data (pressure and temperature 1311 

pertubations) from the Mars Pathfinder landing site ranged between 8.6 and 17.7 m s
-1

. These 1312 

predicted minimum values for convective vortices are uncertain because it is unclear if the DDs 1313 

passed directly over the lander instruments. 1314 

 1315 

Ringrose et al. (2003) analyzed meteorological data from VL2 and found that seven convective 1316 

vortices passed directly over the instruments. They calculated tangential velocities ranging 1317 

between 2.8 and 46 m s
-1

 for inferred core diameters between ~22 and ~313 m, using the 1318 

Rankine vortex approximation. Their derived peak velocity of 46 m s
-1

 is in agreement with 1319 

peak velocities derived from orbital measurements by Choi and Dundas (2011). 1320 

 1321 

3.2.5.3 DD duration 1322 

Terrestrial observations and duration measurements of DDs imply that larger DDs are active 1323 

longer than smaller ones (Flower 1936; Ives 1947; Sinclair 1969; Snow and McClelland 1990; 1324 

Metzger 1999; Pathare et al. 2010). On Mars, Stanzel et al. (2008) and Reiss et al. (2011b) 1325 
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constrained minimum DD durations with orbital data sets. Stanzel et al. (2008) measured 1326 

translational ground speeds of 12 DDs in HRSC images and divided the length of their adjacent 1327 

tracks (for a detailed review about DD tracks we refer the reader to Chapter 4) by their speed. 1328 

The derived durations are minimum values, because the DDs used as the end point were still 1329 

active during observation and likely continued. In addition, the starting point of the DD tracks 1330 

are uncertain because their formation depends on surface substrate properties (see Chapter 4), 1331 

hence the observed DDs might have been active before the track formation started. The 1332 

calculated minimum durations by Stanzel et al. (2008) range between 3.7 and 32.5 minutes with 1333 

a mean value of 13 minutes for DDs characterized by a mean diameter of about 185 m. Reiss et 1334 

al. (2011b) observed DDs in HRSC data, some of which some could be retraced to DDs in a 1335 

MOC WA image acquired 26 minutes earlier, using the measured translational ground speeds 1336 

and directions of motion from the HRSC image data. Two DDs with mean diameters of ~700 m 1337 

had a minimum lifetime of 26 minutes. The inferred minimum duration for one DD with a 1338 

diameter of ~820 m is 74 minutes based on its adjacent track length and translational ground 1339 

speed. Greeley et al. (2006; 2010) derived mean minimum durations of ~2.5 minutes for DDs 1340 

with a mean diameter of ~30 m at the MER Spirit landing site in Gusev crater on Mars. Table 7 1341 

summarizes minimum and mean durations of DDs on Mars. There is a diameter-duration 1342 

relationship for DDs on Mars in which larger DDs last longer than smaller ones; a similar 1343 

relationship has been determined from in situ measurements on both Mars and Earth (Lorenz 1344 

2013), although the underlying reasons for it have yet to be determined.  1345 

3.2.6 Relation of DDs to regional/global circulation 1346 

The significance of the role of DDs in the martian climatic system has long been debated. 1347 

Entrained dust affects both the thermal structure and the circulation of the atmosphere (e.g., 1348 

Kahn et al. 1992). Therefore, if DDs loft a sufficient quantity of dust, they could contribute 1349 

significantly to the seasonal and interannual dust cycles that dominate Mars’ climate system. 1350 

Years ago, it was postulated that DDs could trigger dust storms (Kahn et al. 1992), but orbital 1351 

observations of DDs and dust storms clearly show that this is not the case (e.g., Balme et al. 1352 

2003; Cantor et al. 2006; Stanzel et al. 2008). Rather, DDs appear to be responsible for 1353 

producing a global background haze (with optical depths in the visible of ~0.1-0.3) that persists 1354 

year-round, even during northern spring when dust storm occurrence is at a minimum (e.g., 1355 

Clancy et al. 2000). Evidence for this is inferred from dust flux estimates from both lander and 1356 

orbiter observations of DD activity (Ryan and Lucich 1983; Murphy and Nelli 2002; Balme et 1357 

al. 2003; Ferri et al. 2003; Fisher et al. 2005; Balme and Greeley 2006; Cantor et al. 2006; 1358 
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Whelley and Greeley 2008; Reiss et al. 2011b). Regional to global-scale dust storms entrain 1359 

much of the dust that contributes to the measured AOT, but it is clear that they do not account 1360 

for all of it; DDs have been considered a major source of the remaining component (Guzewich 1361 

et al. 2015). In addition, recent aerosol measurements indicate the presence of a fine particle 1362 

population with a mean radius of ~50 nm (Federova et al. 2014). Without a continuous source 1363 

from the surface, these aerosols would quickly coagulate; Federova et al. (2014) attributed their 1364 

production to continuous lofting from both wind stress and DDs. Finally, many studies using 1365 

GCM simulations agree that DDs are required to maintain the observed low-level background 1366 

dust loading during the aphelion season, when dust storms are not prevalent and thus cannot be 1367 

a reliable source of entrained dust (Newman et al. 2002a; Basu et al. 2004; Kahre et al. 2006).  1368 

 1369 

A major question in martian science is to understand how long-term changes in dust loading 1370 

affect the climate. Mars has undergone dramatic changes in orbital variations in the past 10 Ma, 1371 

with the eccentricity ranging from 0 to 0.115 (currently at a relatively high value of 0.0935), 1372 

obliquity ranging between 15º-45º (currently at a moderate value of 25.19º), and continual 1373 

precession of the aerocentric longitude of perihelion (perihelion currently occurs at Ls=251º, 1374 

nearly coinciding with southern summer solstice at Ls=270º); each of these orbital parameters 1375 

oscillates with periods ranging from ~50 ka – 2.4 Ma (Laskar et al. 2004). Atmospheric 1376 

modeling under different orbital states has provided some insight on how DD activity impacts 1377 

erosion and deposition of dust on the surface. At a high obliquity (45º), DDs are predicted to be 1378 

more active than they are today, but they would loft far less dust than that entrained by saltation 1379 

impact driven by high wind stresses; conversely, at low obliquity (<15º), DDs may be the 1380 

dominant source of atmospheric dust (Newman et al. 2005). In the current perihelion state, dust 1381 

lifting is thought to be caused both by DDs and saltation impact; however, DDs are predicted to 1382 

dominate dust entrainment in the opposing perihelion position, which last occurred 22.5 ka 1383 

(Haberle et al. 2006). 1384 

 1385 

Predictions of dust erosion and deposition rates by both wind stress and DDs can be used to 1386 

place constraints on the age of dust deposits on the martian surface, connecting climate cycles 1387 

to geological processes on the surface. Vast swaths of dust-covered terrain in the low and mid 1388 

northern latitudes of Mars, often termed the “low thermal inertia continents”, are regions of net 1389 

dust deposition (this includes Amazonis Planitia). Estimating that they could be as much as 2 m 1390 

thick, Christensen (1986) proposed that these regions are currently accumulating new deposits, 1391 

but that in opposing perihelion states, these deposits would erode, perhaps as a result of DD 1392 
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activity, and reform elsewhere. Haberle et al. (2006) tested this hypothesis with GCM 1393 

simulations, comparing the present day to that at 22.5 and 72.5 ka, when Mars was at the 1394 

opposite longitude of perihelion. They found that over the last ~100 ka, DDs have caused net 1395 

erosion of these deposits. Newman et al. (2005) looked at longer timescales when the obliquity 1396 

was higher, finding that some of the dusty areas undergo accumulation at high obliquity (>35º), 1397 

and that as a result these deposits may have formed ~>500 ka. However, their model results 1398 

predict regions of net deposition that only partially correspond with the pattern of observed dust 1399 

deposits, indicating that other processes that have not yet been considered must also impact the 1400 

evolution of dust reservoirs on Mars. The full impact of DDs on dust erosion, transport, and 1401 

deposition is not yet understood, but atmospheric modeling suggests that these processes can 1402 

play a significant role in altering both the climate and surface geology on Mars; the reader is 1403 

referred to Chapter 11 for further discussion. 1404 

 1405 

4. Conclusions 1406 

4.1 High-level comparison of atmospheric dust on Earth and Mars 1407 

Although data sets and methods differ, it is possible to perform a semi-quantitative comparison 1408 

of global mean dust measurements on Earth and Mars, placing these estimates in a planetary 1409 

context. Table 8 lists the global mean AOT and DOT, dust emission rate, and the percentage 1410 

estimated to be contributed by convective turbulence (e.g., by DDs). 1411 

 1412 

Global mean AOT values (at a wavelength of 550 nm) for Earth have been measured by a 1413 

number of sensors and simulated with at least one aerosol model, with estimates ranging from 1414 

0.118 to 0.188. However, there are not yet any estimates of the global mean DOT from orbital 1415 

data sets. Chin et al. (2009) used GOCART to estimate that mineral dust consisted of ~30% of 1416 

the AOT, with a 550 nm DOT of 0.042, second in magnitude only to sulfate aerosols. The 1417 

AeroCom project simulated the Earth’s atmospheric dust budget with a median model that uses 1418 

monthly output from twelve aerosol models. Global DOT estimates from these models ranged 1419 

from 0.01 to 0.053, with a median model estimate at 0.023.  1420 

 1421 

A similar estimate can be made for Mars, using the climatology of Montabone et al. (2015). 1422 

The 9.3 μm equivalent column DOTs were converted to broadband visible DOTs by 1423 

multiplying by a factor of 2.0, which is consistent with that expected for 1.5-2.0 μm dust 1424 
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particles (e.g., Lemmon et al. 2015). Further, full-extinction DOTs were estimated from 1425 

absorption-only values by multiplying by an additional suggested factor of 1.3. The resulting 1426 

area-weighted and annually-averaged DOTs for each of seven MYs are listed in Table 8, as is 1427 

the mean DOT for all seven years (0.43). Also listed is the mean DOT excluding MYs 25 and 1428 

28 (0.39), which experienced global-scale dust events (see Figure 7, and note that the global 1429 

mean DOT for MY 25 is twice that of MY 30). Although the martian DOTs are broadband 1430 

equivalent values and the terrestrial DOTs were estimated at 550 nm, the low Angstrom 1431 

coefficient values found for mineral dust imply that the terrestrial broadband AOT and DOT 1432 

values are similar to those estimated at 550 nm, allowing for approximate comparisons of the 1433 

two planetary atmospheres. The global mean martian optical depths are ~2.5-3 times that of 1434 

terrestrial aerosols, and ~15-20 times that contributed by dust on Earth. Mars is, indeed, a dusty 1435 

planet. 1436 

 1437 

As stated in Sec. 2.1.1, annual mineral dust emission rates on Earth range from 1000-1438 

4000 Tg/EY (Boucher et al. 2013). To estimate a comparable mean flux of dust into the 1439 

Martian atmosphere, we consider several observations. Optical depth is proportional to the 1440 

column number density, area, and extinction efficiency. Column mass (CM) is proportional to 1441 

column number density, volume, and particle density. Thus column mass may be expressed as 1442 

     AVQAOTCM // ; where we estimate the particle volume to area ratio, V/A, to be 1443 

4/3 x 1.5x10
-6

 m (Lemmon et al. 2004). This estimate assumes the CM is close to that for 1444 

mono-disperse spheres; the extinction efficiency, Q, is 2-4; and the particle density, ρ, is 2.5 g 1445 

cm
-3

. Thus for the 7 MY mean DOT, we find a column mass of 0.5-1.1x10
-6

 g m
-2

 and an 1446 

atmospheric aerosol mass of 80-150 Tg. During the aftermath of the 1971, 1977a, 1977b, and 1447 

2007 global dust storms, when lifting was inhibited, the sedimentation timescale was 42-67 sols 1448 

(Pollack et al. 1979; Fenton et al. 1997; Lemmon et al. 2015). Thus the characteristic supply 1449 

(and sedimentation) rate must be ~1-4
 
Tg sol

-1
, or ~400-1300 Tg per Earth year. Years without 1450 

global-scale dust events have a slightly lower mean emission rate of ~400-1200 Tg yr
-1

; the 1451 

dustiest year with an available annual mean DOT is MY 25, which had a dust emission rate of 1452 

~600-2000 Tg yr
-1

. The martian dust emission estimate is comparable, if on the low end, to that 1453 

of Earth. Given that the continental surface area of Earth is close to the global surface area of 1454 

Mars, this result suggests that the mean dust lifting rate per unit area is similar on both planets. 1455 

This result is somewhat surprising, given the quite variable nature of dust emission in space and 1456 

time on both Earth and Mars (e.g., little dust lifting is expected over terrestrial rain forests or on 1457 

the martian polar caps). For comparison, meteoric input of dust to the Martian atmosphere is 1458 
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relatively insignificant, at 0.002-0.003 Tg yr
-1

 (Flynn 1992), similar to that estimated for Earth, 1459 

0.0018-0.1 Tg yr
-1

 (Plane 2012). 1460 

 1461 

Jemmett-Smith et al. (2015) estimated that only ~3.4% of the mineral dust emission rate is 1462 

caused by convective turbulence. Without better measurements from the surface, it is difficult 1463 

to make a similarly precise estimate for Mars. Atmospheric models that include 1464 

parameterizations of dust flux from convective turbulence suggest that daytime convective 1465 

activity contributes to as much as 30-50% of the global martian dust budget (Newman et al. 1466 

2002b; Kahre et al. 2006). A second approach makes use of the global-scale DD inventory of 1467 

Cantor et al. (2006), who estimated a global dust flux >4x10
-3

 kg m
-2

 MY
-1

, which amounts to 1468 

>600 Tg/MY (or >300 Tg yr
-1

). Given the range of dust emission rates in a year without a 1469 

global-scale dust event, DDs would contribute to >25-75% of the estimated dust flux, a 1470 

percentage similar to that predicted by the atmospheric models.  1471 

 1472 

From these rough estimates, we may conclude that, although mean dust emission rates are 1473 

similar on Earth and Mars, Mars’ dust budget is more dependent on small-scale convective 1474 

turbulence, whereas Earth’s dust budget is generated mainly by frontal storms. Such storms 1475 

occur on Mars as well (e.g. Wang and Richardson 2015), but the current understanding 1476 

suggests that, unlike on Earth, dust lofting by convective activity is comparable in magnitude to 1477 

these storms on Mars. 1478 

 1479 

4.2 Summary and knowledge gaps 1480 

This review demonstrates the breadth of work being done with orbiting spacecraft data to 1481 

understand lofted dust, particularly that entrained by daytime convective turbulence (most 1482 

notably by DDs), on both Earth and Mars. In the past two decades, the availability of several 1483 

high quality, high resolution spacecraft instruments orbiting Earth has led to an improved 1484 

understanding of the nature of entrained mineral dust. This includes not just dust sources, 1485 

transport pathways, and sinks, but also characteristics of aerosol particle size, shape, 1486 

composition, and optical properties. With this knowledge base, connections are being made 1487 

between mineral dust patterns and weather patterns, both on daily and interannual time scales. 1488 

The same is true of Mars, but to a much more limited extent, with progress being constrained 1489 

by the type and extent of the available data sets. Despite this impediment, ongoing work into 1490 

convectively-lofted dust on Mars is in many ways more advanced than that on Earth. 1491 
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 1492 

It is clear that on both Earth and Mars, mineral dust aerosols play a significant and yet largely 1493 

unconstrained role in modulating the climate, by acting as an internal forcing mechanism in the 1494 

climate system. Atmospheric dust appears to play a relatively more significant role on Mars, 1495 

where dust is plentiful, sinks are more limited (i.e., there are no oceans), and there are fewer 1496 

processes competing with dust (e.g., clouds and precipitation are limited). Similarly, 1497 

convectively-lofted dust is much more prominent on Mars, where the thin atmosphere and 1498 

typical daytime superadiabatic conditions produce vigorous turbulent activity that encourages 1499 

the formation of dusty plumes and DDs. 1500 

 1501 

Several years of monitoring dust and DD activity on Mars has led to a general understanding 1502 

about the spatial and temporal patterns of dust lifting. DDs are widespread phenomena on Mars, 1503 

reaching to nearly all latitudes and elevations. Like those on Earth, they occur most often when 1504 

insolation is at its seasonal and diurnal peak. This correlation is modulated by weather patterns, 1505 

most notably those that generate dust storms, which can either suppress or enhance DD 1506 

production. In addition, local factors such as albedo contrast on the surface, nearby topographic 1507 

relief, and changes in dust source availability also appear to influence DD formation. It is likely 1508 

that remote monitoring of DD occurrence and density would be of value in studying similar 1509 

processes on Earth. 1510 

 1511 

Physical characteristics of martian DDs observed from orbit differ from those measured from 1512 

landed missions, which are in some ways similar to many of the field surveys performed on 1513 

Earth. From orbit, DDs are generally wider, taller, translate along the ground faster, and rotate 1514 

faster than those measured from the surface. To some degree, these differences are a factor of 1515 

image resolution: for example, only the largest DDs are visible from orbit, whereas 1516 

measurements of much smaller and more plentiful DDs dominate the data sets from the surface 1517 

(see also Fig. 9). Despite this measurement bias, some true physical variations are clear. 1518 

Examples include the towering DDs of Amazonis Planitia, which are not common in most other 1519 

locations on Mars, and the fact that many DD translational ground speeds are much higher than 1520 

those measured on Earth. The failure to obtain simultaneous observations of individual DDs 1521 

from orbit and the surface, despite valiant attempts to do so, leaves a gap in understanding the 1522 

differences between the observed DD characteristics. Given that DD dimensions and 1523 

translational speeds could be indicative of conditions within the PBL, it may be of value to 1524 

resolve the discrepancy between orbital and surface measurements, both for Mars and Earth 1525 
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atmospheric studies. This could be accomplished through coordinated orbital and surface 1526 

observations on both Earth and Mars, or with LES that resolve individual DDs, thus allowing 1527 

virtual viewing both from above and from the ground. 1528 

 1529 

Despite decades of studying martian DDs, many questions remain: why are DDs so numerous 1530 

and large in Amazonis Planitia, and less so at other similarly low-lying plains with comparable 1531 

albedos, thermal inertias, and latitudes? why do DDs form at elevation on Arsia Mons, but not 1532 

at the tops of other high-standing volcanoes on Mars? how do DDs contribute to surface 1533 

erosion and the deposition of long-term dust reservoirs on the surface? how can DDs be used to 1534 

characterize the present-day atmosphere of Mars, and how does interannual variation in DD 1535 

activity interact with and reflect other interannual changes (e.g., albedo and thermal inertia 1536 

patterns, annual H2O and CO2 cycles)? what locally-dependent factors control DD size and 1537 

production rates? Further research on the expanding data sets will surely address many of these 1538 

questions, as will continued attempts to model DD behavior under increasingly realistic 1539 

conditions. Similar questions could be posed for Earth, using the available literature on Mars as 1540 

a starting point. The first question to address is why terrestrial DDs have not yet been observed 1541 

from orbit. We suggest that the numerous high resolution cameras, and perhaps lidars as well, 1542 

continually monitoring the Earth’s surface are an untapped resource for DD studies, both for 1543 

comparative planetology with Mars and to better understand aerosol entrainment mechanisms 1544 

on Earth.  1545 

 1546 

In summary, dust entrained by daytime convective turbulence, particularly that of DDs,  1547 

appears to impact (at least) local atmospheric conditions on Earth and the global climate on 1548 

Mars. Much has been learned about atmospheric dust from orbital sensor data over the last few 1549 

decades, but varying methods, data sets, and scientific goals have led to different insights on 1550 

Earth and Mars. Future investigations on each planet have the potential to inform further 1551 

research on the other planet. For example, scouring the extensive terrestrial image data sets for 1552 

DDs, as has been done for Mars, could prove to be quite fruitful. Likewise, observations and 1553 

validated simulations of terrestrial DDs from both the surface and from above could resolve the 1554 

current discrepancy between landed and orbital spacecraft observations of martian DDs. Studies 1555 

on both planets indicate that DDs are an integral part of the dust cycle, which likely varies in 1556 

relative importance with temporal and spatial changes in climate. We propose that further 1557 

progress can be accelerated when the terrestrial and planetary communities work together to 1558 

determine how convectively-lofted dust impacts planetary atmospheres. 1559 



48 

 1560 

Acknowledgements 1561 

The authors would like to thank two anonymous reviewers and an editor for many suggestions that greatly 1562 

improved the manuscript.1563 



49 

Figure Captions 1564 

Figure 1. Early spacecraft images of dust storms. a) An early image of dust over the Arabian Sea and Gulf of 1565 
Oman; the view is towards the southwest, with Iran and Pakistan on the right and the Arabian Peninsula on the left. 1566 
Image from Schnapf (1964). b) In 1971, Mariner 9 entered orbit around Mars during an intense, global dust storm, 1567 
that obscured all surface features except for four tall volcano peaks (labeled A through D) and the south polar cap  1568 
(white spot at lower right). Image from Masursky et al. (1972). 1569 

Figure 2. Visible MODIS images of dust plumes over a) the Yellow Sea and b) downwind of North Africa. 1570 
Adapted from Marticorena and Formenti (2013). 1571 

Figure 3. Mean Aerosol Optical Depth (AOD, which is used interchangeably with AOT) from June 2000 through 1572 
May 2010 from MISR. (NASA map by Robert Simmon, based on MISR data.)  1573 

Figure 4. Seasonal distribution of AOT (blue) and DOD (yellow to red) measured from MODIS Deep Blue aerosol 1574 
products, from Ginoux et al. (2012). AOT is sensitive to all particulates, whereas DOD is derived from AOT and 1575 
considered representative of mineral dust from natural sources.  1576 

Figure 5. Characteristic evolution of dust storms (from Wang and Richardson 2015) showing 60ºS to 60ºN in a 1577 
cylindrical projection for Ls=214-228º in MY 27 (2005). Numbers indicate the relative sol. 1578 

Figure 6. Routes for storm sequences as described (modified from Wang and Richardson 2015). Black indicates 1579 
storms of northern origin; green indicates those of southern origin; dashed lines indicate polar storms. Numbers 1580 
indicate how many storms were observed in each trajectory segment.  1581 

Figure 7. Climatology of column dust optical depth (CDOD) at 9.3 μm spanning MYs 24-31 (April 1999 – July 1582 
2013), from Montabone et al. (2015). 1583 

Figure 8. Visible optical depth from the model assimilation at six intervals during the MY 23 (1997) Noachis dust 1584 
storm, normalized to 610 Pa to remove topographic effects (from Lewis et al. 2007). The plots are in polar 1585 
stereographic projection with the south pole at the center, the equator at the edge, and with the prime meridian 1586 
pointing upward. 1587 

Figure 9. The minimum detected dust devil diameter on Mars from different orbital image surveys, showing a 1588 
trend towards smaller dust devils with increased sensor resolution. 1589 

Figure 10. Examples of DDs imaged by cameras orbiting Mars. a) VO2 image 038B25, b) MOC WA image 1590 
E23/01275, with box showing the location of the concurrent c) MOC NA image E23/01274, d) HRSC image 1591 
H2054_0000_ND3, e) THEMIS VIS image V02326010, f) CTX image G21_026394_2155, with a box showing 1592 
the location of the concurrent g) HiRISE image ESP_026394_2160 (both color and red images are shown). 1593 

Figure 11. A MOLA shaded relief map of Mars with colorized elevation, showing locations referred to in this 1594 
work. DD monitoring sites for three global-scale surveys are noted. Note that Cantor et al. (2006)’s study included 1595 
nearly the entire planet and that the regions indicated here are those with dedicated image targeting for DD 1596 
activity. 1597 

Figure 12. Locations of MOC WA and NA images with DDs identified in the Cantor et al. (2006) survey, 1598 
superposed on a composite of TES surface albedo and MOLA shaded relief. Note the high density of DDs in 1599 
Amazonis Planitia, their widespread distribution in the southern midlatitudes, and the different spatial patterns of 1600 
DDs detected by the two different cameras. 1601 

Figure 13. Multiple years of DD densities measured in Amazonis Planitia from a) MOC WA images, modified 1602 
from Cantor et al. (2006) and b) CTX images, modified from Fenton and Lorenz (2015). Colored bars correspond 1603 
to the duration of global-scale dust events. 1604 

Figure 14. A seasonally-repeating spiral cloud 50 km wide on the caldera floor of Arsia Mons, ~16.3 km above the 1605 
datum. 1606 

Figure 15. DD diameter vs. height, based on measurements from orbital imagers described in the literature (see 1607 
Table 4). Black lines show height-to-diameter ratios of 1, 5, and 20. Minimum detectable DD diameter depends 1608 
on, among other factors, image resolution (see also Figure 9 and Table 4). 1609 
 1610 

1611 
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Table Captions 1612 

Table 1. Instruments on spacecraft orbiting Earth, discussed in the text, that are or were commonly used to study 1613 
atmospheric dust. 1614 

Table 2. Instruments on spacecraft orbiting Mars, discussed in the text, that are or were commonly used to study 1615 
atmospheric dust. 1616 

Table 3. Global-scale DD surveys on Mars. 1617 

Table 4. The range of DD diameters and heights measured from various orbital platforms on Mars, including the 1618 
number of DDs measured (N). 1619 

Table 5. Translational speeds of martian DDs, including the number of DDs considered (N), the observed range, 1620 
mean and median values. 1621 

Table 6. Tangential velocities of DDs on Mars and Earth, including the number of DDs considered (N), the mean 1622 
velocity (Vmean), and the maximum velocity (Vmax). 1623 

Table 7. DD durations on Mars, including the number of DDs measured (N), mean and minimum duration, and 1624 
mean DD diameter. 1625 

Table 8. Comparison of dust loading measurements on Earth and Mars 1626 
 1627 

 1628 

 1629 

 1630 

 1631 

 1632 

1633 
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Figure 1. Early spacecraft images of dust storms. a) An early image of dust over the Arabian Sea and Gulf of 

Oman; the view is towards the southwest, with Iran and Pakistan on the right and the Arabian Peninsula on 

the left. (Image from Schnapf, 1964) b) In 1971, Mariner 9 entered orbit around Mars during an intense, 

global dust storm, that obscured all surface features except for four tall volcano peaks (labeled A through D) 

and the south polar cap  (white spot at lower right). Image from Masursky et al. 1972. 

 

Figure 2. Visible MODIS images of dust plumes over a) the Yellow Sea and b) downwind of North Africa. 

Adapted from Marticorena and Formenti (2013). 

 

 



 

Figure 3. Mean Aerosol Optical Depth (AOD, which is used interchangeably with AOT) from June 2000 

through May 2010 from MISR. (NASA map by Robert Simmon, based on MISR data.)  

 

 



 

Figure 4. Seasonal distribution of AOT (blue) and DOD (yellow to red) measured from MODIS Deep Blue 

aerosol products, from Ginoux et al. (2012). AOT is sensitive to all particulates, whereas DOD is derived from 

AOT and considered representative of mineral dust from natural sources.  

  



 

Figure 5. Characteristic evolution of dust storms (from Wang and Richardson 2015) showing 60ºS to 60ºN in 

a cylindrical projection for Ls=214-228º in MY 27 (2005). Numbers indicate the relative sol. 

 

 

Figure 6. Routes for storm sequences as described (modified from Wang and Richardson 2015). Black 

indicates storms of northern origin; green indicates those of southern origin; dashed lines indicate polar 

storms. Numbers indicate how many storms were observed in each trajectory segment.  

  



 

Figure 7. Climatology of column dust optical depth (CDOD) at 9.3 μm spanning MYs 24-31 (April 1999 – July 

2013), from Montabone et al. (2015). 

  



 

Figure 8. Visible optical depth from the model assimilation at six intervals during the MY 23 (1997) Noachis 

dust storm, normalized to 610 Pa to remove topographic effects (from Lewis et al. 2007). The plots are in 

polar stereographic projection with the south pole at the center, the equator at the edge, and with the prime 

meridian pointing upward. 

  



 

Figure 9. The minimum detected dust devil diameter on Mars from different orbital image surveys, showing a 

trend towards smaller dust devils with increased sensor resolution. 

  



 

 

Figure 10. Examples of dust devils imaged by cameras orbiting Mars. a) VO2 image 038B25, b) MOC WA 

image E23/01275, with box showing the location of the concurrent c) MOC NA image E23/01274, d) HRSC 

image H2054_0000_ND3, e) THEMIS VIS image V02326010, f) CTX image G21_026394_2155, with a box 



showing the location of the concurrent g) HiRISE image ESP_026394_2160 (both color and red images are 

shown). 

 

 

 

Figure 11. A MOLA shaded relief map of Mars with colorized elevation, showing locations referred to in this 

work. DD monitoring sites for three global-scale surveys are noted. Note that Cetal06’s study included nearly 

the entire planet and that the regions indicated here are those with dedicated image targeting for DD activity. 

 

 

 



 

Figure 12. Locations of MOC WA and NA images with DDs identified in the Cetal06 survey, superposed on a 

composite of TES surface albedo and MOLA shaded relief. Note the high density of DDs in Amazonis 

Planitia, their widespread distribution in the southern midlatitudes, and the different spatial patterns of DDs 

detected by the two different cameras. 

 

 

 

Figure 13. Multiple years of DD densities measured in Amazonis Planitia from a) MOC WA images, modified 

from Cantor et al. (2006) and b) CTX images, modified from Fenton and Lorenz (2015). Colored bars 

correspond to the duration of global-scale dust events. 

 

 



 

Figure 14. A seasonally-repeating spiral cloud 50 km wide on the caldera floor of Arsia Mons, ~16.3 km above 

the datum. MOC WA images E05/01721 and E05/01722. 

 

 

Figure 15. DD diameter vs. height, based on measurements from orbital imagers described in the literature 

(see Table 4). Black lines show height-to-diameter ratios of 1, 5, and 20. Minimum detectable DD diameter 

depends on, among other factors, image resolution (see also Fig. 9 and Table 4). 



 

 



Table 1. Instruments on spacecraft orbiting Earth, discussed in the text, that are or were commonly used to study 

atmospheric dust. 

Mission: 

Instrument 
Spectral Range (μm) 

Spatial 

Resolution 

(m/px) 

Footprint Area 

(km
2
) or 

Coverage 

Local Time 

TIROS-6 (1962-1963): 

VCS-MA 1 band: visible 2500 518x10
3
 Various 

Meteosat-1 to Meteosat-7: 

MVIRI 0.5-0.9 μm 

5.7-7.1 μm 

10.5-12.5 μm 

2500 

5000 

5000 

Full disk Every 30 min 

Meteosat-8 to Meteosat-11: 

SEVIRI 1 band: 0.6-0.9 μm 

12 bands: 0.56-14.4 μm 

1000 

3000 

Full disk Every 15 min 

NOAA-6, NOAA-8, NOAA-10, TIROS-N: 

AVHRR 1 band: 0.55-0.68 μm 

3 bands: 0.725-11.5 μm 

1100 Global: 1x/day 

Global: 2x/day 

07:30, 14:30 

NOAA-7, NOAA-9, NOAA-11 to NOAA-14: 

AVHRR/2 1 band: 0.55-0.68 μm 

4 bands: 0.725-12.5 μm 

1100 Global: 1x/day 

Global: 2x/day 

Various 

NOAA-15 to NOAA-19, Metop-A to Metop-C: 

AVHRR/3 1 band: 0.58-0.68 μm 

5 bands: 0.725-12.5 μm 

1100 Global: 1x/day 

Global: 2x/day 

Various 

ADEOS, Meteor-3 to Meteor-5, Nimbus-7, TOMS Earth Probe: 

TOMS 6 bands: 312.5-380 nm 50 km Global: 1x/day Various 

Terra, Aqua: 

MODIS 2 bands: 645, 858 nm 

5 bands: 0.469-2.130 μm 

29 bands: 0.412-14.235 μm 

250 

500 

1000 

Global: 1x/day 

Global: 1x/day 

Global: 2x/day 

10:30, 13:30 

MISR (terra) 4 bands: 0.4464-0.8664 μm 250-275 Global: 1x/9 days 10:30 

OrbView-2: 

SeaWiFS 8 bands: 0.412-0.865 μm 1100, 4500 Global: 1x/day 12:00 

ADEOS-2: 

GLI 29 bands: 0.38-2.21 μm 

6 bands: 3.715-12.0 μm 

250 

1000 

Global: 0.5x/day 

Global: 1x/day 

10:30 

ADEOS, ADEOS-2, PARASOL: 

POLDER 9 bands: 0.444-10.2 μm 

3 polarizations 

6500 ~Global: 1x/day Various 

ICESat: 

GLAS 532, 1064 nm Horiz.: 66  

Vert.: 76.8 

- Various 

Space Shuttle Discovery: 

LITE 355, 532, 1064 nm Horiz.: 300 

Vert.: 15 

- Various 

CALIPSO: 

CALIOP 532, 1064 nm 

2 polarizations 

Horiz: 70 

Vert: 30 

- 13:30 

 

  



 

Table 2. Instruments on spacecraft orbiting Mars, discussed in the text, that have been used to study atmospheric 

dust. 

Mission: 

Instrument 

# Bands/Channels: 

Spectral Range
a
 (μm) 

Spatial 

Resolution
b
 

(m/px) 

Footprint Area 

(km
2
) 

Local Time 

Mariner 9 (14 November 1971 – 27 October 1972): 

IRIS 750: 5-50 110 km/px ~9500 various 

VO1 (19 June 1976 – 17 August 1980), VO2 (7 August 1976 – 25 July 1978): 

VIS 5: 0.35-0.7 60-80 ~7x10
3
 

various IRTM broadband: 0.3-3.5 

28: 6-30 

>1500 >2 

Phobos 2 (29 January 1989 – 27 March 1989) 

Auguste 2: 1.9, 3.7 occultation occultation various 

MGS (12 September 1997 – 2 November 2006): 

MOC WA Red: 0.575-0.625  

Blue: 0.4-0.45 

230-7000 ~21-240x10
3
 

~13:00-

15:00 

MOC NA  0.5-0.9 1.4-13 ~10-600 

TES VNIR: 0.3-2.9 

Thermal IR: 5.1-150 

300: 5.8-50 

~6x3 km/px ~18 

MOLA 1.064 160 0.02 

ODY (24 October 2001 – present): 

THEMIS VIS 5: 0.42-0.86 18-70 ~300-20x10
3
 ~14:00-

18:00 THEMIS IR 9: 6.8-14.9 100 ~840-47x10
3 

MEX (25 December 2003 – present): 

HRSC 4: 0.53-0.97 >12.5 ~60-400x10
3
 

Various 

PFS 1.2-45 10, 20 km/px 100, 400 

OMEGA 0.38-1.05 

0.93-5.1 

350-12000 various 

SPICAM-UV 118-320 nm various various 

SPICAM-IR 1-1.7 various various 

MRO (10 March 2006 – present): 

CTX 1: 0.5-0.8 4.9-10.6 ~8x10
3
 

~14:00-

16:00 

HiRISE 3: 0.57-0.83 0.25-1 ~10-600 

CRISM 545: 0.362-3.920 18-36 various  

MARCI 7: 0.258-0.718 1-10 km/px various 

MCS broadband: 0.3-3.0 

8: 11.8-42.1 

sounder various 

a
Units are in μm unless otherwise stated. 

b
Units are in m/px unless otherwise stated. 

  



Table 3. Global-scale DD surveys on Mars. 

Global Survey Earth Date: 

YYYY/MM/DD 

Mars Date: MY/Ls Mission: Camera 

Thomas and Gierasch (1985) 1976/06/22-

1980/07/30 

12/84º-14/142º VO1: VIS 

VO2: VIS 

Fisher et al. (2005) 1999/03/9-

2001/07/31 

24/107º – 25/206º MGS: MOC WA 

MGS: MOC NA 

MO: THEMIS VIS 

Cantor et al. (2006) 1997/09/15-

2006/01/21 

23/181º – 27/359º MGS: MOC WA 

MGS: MOC NA 

Stanzel et al. (2008) 2004/01-2006/07 26/325º – 28/86º MEX: HRSC 

Towner (2009) 2004/04/18-

2006/03/03 

27/20º – 28/19º MO: THEMIS IR 

MO: THEMIS VIS 

Reiss et al. (2014) 2008/01-2011/12 29/11º-31/50º MRO: CRISM 

MRO: CTX 

MRO: HiRISE 

 

Table 4. The range of DD diameters and heights measured from various orbital platforms on Mars, including the 

number of DDs measured (N). 

Reference Instrument 

Minimum 

resolution (m/px) N 

Diameter  

range (m) 

Height  

range (km) 

Thomas and Gierasch (1985) VO1/VO2 VIS 60 ~100 70 - 1000 1 - 2.5 

Neumann et al. (2003) MOLA ~160 7 N/A 8-10 

Fisher et al. (2005) MOC NA 9.28 ~25 30 - 510 0.03 - 0.8 

Fisher et al. (2005) MOC WA 230 14 N/A 3.5 - 8.5 

Stanzel et al. (2008) HRSC 12.5 ~200 45 - 1650 0.1 - 2.2 

Towner (2009) THEMIS VIS 36 8 110 - 335 0.25 - 1.9 

Choi and Dundas (2011) HiRISE 0.25 4 25 - 250 0.13 - 0.65 

Reiss et al. (2011b) MOC WA 244 13 410 - 1180 0.3 - 1.35 

Reiss et al. (2011b) HRSC 12.5 26 45 - 860 0.06 - 1.7 

Reiss et al. (2014a) CTX or HiRISE 0.25 44 10 - 280 0.04 - 4.4 

Reiss et al. (2014b) HiRISE 0.25 3 75 - 175 0.37 - 0.87 

Fenton and Lorenz (2015) CTX 5.77 2038 N/A < 0.1 - 16.5 

 Mean/median of the above data sets: 220/160 0.63/0.45 

 

Table 5. Translational speeds of martian DDs, including the number of DDs considered (N), the observed range, 

mean and median values. 

Method Reference N Range (m/s) Mean, (m/s) Median, (m/s) 

Orbiter images  Stanzel et al. (2008) 194 1-59 13 10.4 

Reiss et al. (2011b) 26 3-22 12 11.1 

Reiss et al. (2014a) 44 4-25 12 11.5 

Lander images Greeley et al. (2010) 498 0.1-27 N/A 1.5-2.5
a
 

a
Range of medians from three analyzed seasons 

 

  



Table 6. Tangential velocities of DDs on Mars and Earth, including the number of DDs considered (N), the mean 

velocity (Vmean), and the maximum velocity (Vmax). 

Method  Reference  N  Vmean (m s
-1

)  Vmax (m s
-1

) 

Orbiter images (Mars) Cantor et al. (2006) 1 14.3 

 Choi and Dundas (2011) 4 25 45 

In situ (Earth) Ryan and Carroll (1970) 80 4.2 9.5 

Fitzjarrald (1973) 11 7.3 11.5 

Sinclair (1973) 3 10.8 11.5 

Metzger (1999) 5 13.6 22 

Metzger (2011) 12 11.7 16 

Theoretical calculation (Mars) Renno et al. (2000) 19 11.5 17.7 

Ringrose et al. (2003) 7 16.6 46 

 

Table 7. DD durations on Mars, including the number of DDs measured (N), mean and minimum duration, and 

mean DD diameter. 

Method Reference N 

Mean  

duration (min) 

Minimum 

duration (min) 

Mean 

diameter (m) 

Orbiter 

images  

Stanzel et al. (2008) 12 13 3.7-32.5 185 

Reiss et al. (2011) 2 N/A 26 700 

Reiss et al. (2011) 1 N/A 74 820 

Lander 

images  

Greeley et al. (2006) 533 2.83 0.35-32.27 19 

Greeley et al. (2010) 101 2.15 N/A 24 

Greeley et al. (2010) 127 2.6 N/A 39 

 

  



Table 8. Comparison of dust loading measurements on Earth and Mars 

EARTH MARS 

Global mean AOT and DOT: 

Data/Model 

MODIS 

 

SeaWiFS 

 

TOMS 

MISR 

GOCART 

 

 

Model 

GOCART 

AeroCom 

EY 

2002 

2001 

2001 

1997-2010 

2001 

2001 

2001 

2000-2007 

 

EY 

2000-2007 

N/A 

550 nm AOT 

0.188
a
 

0.159
b
 

0.124
b
 

0.13
c
 

0.153
b
 

0.167
b
 

0.118
b
 

0.14
d
 

 

550 nm DOT 

0.042
d
 

0.023
e
 

MY (EY) 

25 (00/05-02/04) 

26 (02/04-04/03) 

27 (04/03-06/01) 

28 (06/01-07/12) 

29 (07/12-09/10) 

30 (09/10-11/09) 

31 (11/09/13/07) 

7 MY mean 

MY w/o GDE 

DOT 

*0.67 

0.43 

0.40 

*0.47 

0.38 

0.33 

0.36 

0.43 

0.39 
 

Mineral dust emission (Tg/Earth yr): 

1000-4000
f 

7 MY mean 

MY w/o GDE 

MY 25 

400-1300 

400-1200 

600-2000 

Percentage lofted by daytime dry convective turbulence: 

~3.4%
g 

~25-75%
h,i,j 

*MYs with a global-scale dust event. 

Table values from 
a
Bellouin et al. (2008), 

b
Chin et al. (2014), 

c
Hsu et al. (2012), 

d
Chin et al. (2009), 

e
Huneeus et al. 

(2011), 
f
Boucher et al. (2013), 

g
Jemmett-Smith et al. (2015), 

h
Cantor et al. (2006), 

i
Kahre et al. (2006), 

j
Newman et 

al. (2002b) 
 

 

 


