11 research outputs found

    Transformative Geomorphic Research Using Laboratory Experimentation

    Get PDF
    Laboratory experiments in geomorphology is the theme of the 46th annual Binghamton Geomorphology Symposium (BGS). While geomorphic research historically has been dominated by field-based endeavors, laboratory experimentation has emerged as an important methodological approach to study these phenomena, employed primarily to address issues related to scale and the analytical treatment of the geomorphic processes. It is contended here that geomorphic laboratory experiments have resulted in transformative research. Several examples drawn from the fluvial and aeolian research communities are offered as testament to this belief, and these select transformative endeavors often share very similar attributes. The 46th BGS will focus on eight broad themes within laboratory experimentation, and a strong and diverse group of scientists have been assembled to speak authoritatively on these topics, featuring several high-profile projects worldwide. This special issue of the journal Geomorphology represents a collection of the papers written in support of this symposium

    Constant stress layer characteristics in simulated stratified air flows: Implications for aeolian transport

    Get PDF
    Varying thermal atmospheric stability conditions and their effects on shearing flows has long been a subject of interest for researchers working in atmospheric science. The development of new instrument technologies now offers an opportunity to study flows with high spatial and temporal resolutions in wind tunnel atmospheric boundary layers. In the presented study, we use a laser Doppler anemometer within the Trent Environmental Wind Tunnel Laboratory to investigate the influence of thermal stratification on the constant stress layer. Analyses of the thermal stratification represented by the gradient Richardson number and the apparent von Kármán parameter, shear velocity, and the slope of the streamwise velocity profiles reveal strong linear relationships. An exponential relationship between thermal stability and the apparent roughness length is also revealed. Profiles of the streamwise and vertical velocity and turbulence intensity, as well as the dimensionless Reynolds stress, are influenced by the gradient Richardson number. These findings have implications for producing accurate models of sediment entrainment and transport by wind in non-neutral conditions

    Evaporative sodium salt crust development and its wind tunnel derived transport dynamics under variable climatic conditions

    Get PDF
    Playas (or ephemeral lakes) can be significant sources of dust, but they are typically covered by salt crusts of variable mineralogy and these introduce uncertainty into dust emission predictions. Despite the importance of crust mineralogy to emission potential, little is known about (i) the effect of short-term changes in temperature and relative humidity on the erodibility of these crusts, and (ii) the influence of crust degradation and mineralogy on wind speed threshold for dust emission. Our understanding of systems where emission is not driven by impacts from saltators is particularly poor. This paper describes a wind tunnel study in which dust emission in the absence of saltating particles was measured for a suite of climatic conditions and salt crust types commonly found on Sua Pan, Botswana. The crusts were found to be non-emissive under climate conditions characteristic of dawn and early morning, as compared to hot and dry daytime conditions when the wind speed threshold for dust emission appears to be highly variable, depending upon salt crust physicochemistry. Significantly, sodium sulphate rich crusts were found to be more emissive than crusts formed from sodium chloride, while degraded versions of both crusts had a lower emission threshold than fresh, continuous crusts. The results from this study are in agreement with in-situ field measurements and confirm that dust emission from salt crusted surfaces can occur without saltation, although the vertical fluxes are orders of magnitude lower (∼10 μg/m/s) than for aeolian systems where entrainment is driven by particle impact

    High-latitude dust in the Earth system

    Get PDF
    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80–100 Tg yr−1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios

    Field Study of Beach Water Content as a Guide to Wind Erosion Potential

    No full text

    Laboratory and Experimental Geomorphology

    No full text
    Experimental research has played an integral role in the development of foundational knowledge on which the physical sciences and engineering are based. Motivated by the control, precision, and reproducibility that it affords, as well as by its ability to adapt to the changing needs of the discipline, geomorphologists now embrace the utility of laboratory-based inquiry. The formative years for the use of hydraulic flumes, river modeling flumes, and wind tunnels are reviewed in this article, as these apparatuses and their appurtenant equipment provide unrivalled opportunities for education and research, commonly producing transformative results that have markedly improved the understanding of Earth surface processes. Laboratory-based geomorphology is entirely complementary to field- and numerical-based approaches

    Preferential transport of microplastics by wind

    Get PDF
    Contamination of terrestrial and marine environments by plastic waste has been widely documented. Most research into the distribution of microplastics has focused on water but here we show that wind transport can be very effective in mobilising microplastic particles. A series of wind tunnel experiments using two different substrates (sand and soil), two different microplastics (microbeads and fibres) and 5 different concentrations of microplastics (ranging from 0 mg kg−1dw to 1040 mg kg−1dw) is used to demonstrate that microplastics are preferentially transported by wind compared to sand and soil. When compared to either of the untreated substrate beds (0 mg kg−1dw), the inclusion of microplastics was not found to significantly affect the wind erosion threshold for any of the concentrations or geometric forms (fibres or beads) tested. Averaged over all concentrations of microplastics and both substrate types, microplastic enrichment was lower for microbeads than fibres. The enrichment of microplastic fibres within the entrained particulate matter was one to two orders of magnitude higher for both test bed substrates, ranging from 98 to 498 for the sand and 278 to 726 for the soil. This suggests microplastic shape needs to be carefully parameterized in models of atmospheric microplastic transport. We suggest that microplastic research could benefit from previous investigations into the wind erosion of soil organic carbon
    corecore