284 research outputs found

    Reply to comment by Poole et al. on a tropical NAT-like belt observed from space

    Get PDF
    In their comment, Poole et al. (2009) aim to show it is highly improbable that the observations described in Chepfer and Noel (2009), and described as "NAT-like" therein, are produced by Nitric Acid Trihydrate (NAT) particles. In this reply, we attempt to show why there is, in our opinion, too little evidence to reject this interpretation right away

    Classification of ice crystal shapes in midlatitude ice clouds from three years of lidar observations over the SIRTA observatory

    Get PDF
    This paper presents a study of ice crystal shapes in midlatitude ice clouds inferred from a technique based on the comparison of ray-tracing simulations with lidar depolarization ratio measured at 532 nm. This technique is applied to three years of lidar depolarization ratio observations from the SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique) observatory in Palaiseau, France, amounting to 322 different days of ice cloud observations. Particles in clouds are classified in three major groups : plates, columns, and irregular shapes with aspect ratios close to unity. Retrieved shapes are correlated with radiosounding observations from a close-by meteorological station: temperature, relative humidity, wind speed and direction

    On the origin of subvisible cirrus clouds in the tropical upper troposphere

    Get PDF
    Spaceborne lidar observations have recently revealed a previously undetected significant population of Subvisible Cirrus (SVC). We show them to be colder than −74 °, with an optical depth below 0.0015 on average. The formation and persistence over time of this new cloud population could be related to several atmospheric phenomena. In this paper, we investigate if these clouds follow the same formation mechanisms as the general tropical cirrus population (including convection and in-situ ice nucleation), or if specific nucleation sites and trace species play a role in their formation. The importance of three scenarios in the formation of the global SVC population is investigated through different approaches that include comparisons with data imaging from several spaceborne instruments and back-trajectories that document the history and behavior of air masses leading to the point in time and space where subvisible cirrus were detected. In order to simplify the study of their formation, we singled out SVC with coherent temperature histories (mean variance lower than 4 K) according to back-trajectories along 5, 10 or 15 days (respectively 58, 25 and 11% of SVC). Our results suggest that external processes, including local increases in liquid and hygroscopic aerosol concentration (either through biomass burning or volcanic injection forming sulfate-based aerosols in the troposphere or the stratosphere) have very limited short-term or mid-term impact on the SVC population. On the other hand, we find that ~20% of air masses leading to SVC formation interacted with convective activity 5 days before they led to cloud formation and detection, a number that climbs to 60% over 15 days. SVC formation appears especially linked to convection over Africa and Central America, more so during JJA than DJF. These results support the view that the SVC population observed by CALIOP is an extension of the general upper tropospheric ice clouds population with its extreme thinness as its only differentiating factor

    The Cumulus and Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD)

    Get PDF
    Low clouds continue to contribute greatly to the uncertainty in cloud feedback estimates. Depending on whether a region is dominated by cumulus (Cu) or stratocumulus (Sc) clouds, the interannual low-cloud feedback is somewhat different in both spaceborne and large-eddy simulation studies. Therefore, simulating the correct amount and variation of the Cu and Sc cloud distributions could be crucial to predict future cloud feedbacks. Here we document spatial distributions and profiles of Sc and Cu clouds derived from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat measurements. For this purpose, we create a new dataset called the Cumulus And Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD), which identifies Sc, broken Sc, Cu under Sc, Cu with stratiform outflow and Cu. To separate the Cu from Sc, we design an original method based on the cloud height, horizontal extent, vertical variability and horizontal continuity, which is separately applied to both CALIPSO and combined CloudSatCALIPSO observations. First, the choice of parameters used in the discrimination algorithm is investigated and validated in selected Cu, Sc and ScCu transition case studies. Then, the global statistics are compared against those from existing passive- and active-sensor satellite observations. Our results indicate that the cloud optical thickness as used in passive-sensor observations is not a sufficient parameter to discriminate Cu from Sc clouds, in agreement with previous literature. Using clustering-derived datasets shows better results although one cannot completely separate cloud types with such an approach. On the contrary, classifying Cu and Sc clouds and the transition between them based on their geometrical shape and spatial heterogeneity leads to spatial distributions consistent with prior knowledge of these clouds, from ground-based, ship-based and field campaigns. Furthermore, we show that our method improves existing ScCu classifications by using additional information on cloud height and vertical cloud fraction variation. Finally, the CASCCAD datasets provide a basis to evaluate shallow convection and stratocumulus clouds on a global scale in climate models and potentially improve our understanding of low-level cloud feedbacks. The CASCCAD dataset (Cesana, 2019, https://doi.org/10.5281/zenodo.2667637) is available on the Goddard Institute for Space Studies (GISS) website at https://data.giss.nasa.gov/clouds/casccad/ (last access: 5 November 2019) and on the zenodo website at https://zenodo.org/record/2667637 (last access: 5 November 2019)

    Effects of solar activity on noise in CALIOP profiles above the South Atlantic Anomaly

    Get PDF
    We show that nighttime dark noise measurements from the spaceborne lidar CALIOP contain valuable information about the evolution of upwelling high-energy radiation levels. Above the South Atlantic Anomaly (SAA), CALIOP dark noise levels fluctuate by ±6% between 2006 and 2013, and follow the known anticorrelation of local particle flux with the 11-year cycle of solar activity (with a 1-year lag). By analyzing the geographic distribution of noisy profiles, we are able to reproduce known findings about the SAA region. Over the considered period, it shifts westward by 0.3° year<sup>−1</sup>, and changes in size by 6° meridionally and 2° zonally, becoming larger with weaker solar activity. All results are in strong agreement with previous works. We predict SAA noise levels will increase anew after 2014, and will affect future spaceborne lidar missions most near 2020

    Ice crystal shapes in cirrus clouds derived from POLDER-1/ADEOS-1.

    Get PDF
    International audienceThis paper discusses the retrieval of ice crystal shapes of cirrus clouds on a global scale using observations collected with POLDER-1 (POLarization and Directionality of the Earth Reflectance) onboard the ADEOS-1 platform. The retrieval is based on polarized bidirectional observations made by POLDER. First, normalized polarized radiances are simulated for cirrus clouds composed of ice crystals that differ in shape and are randomly oriented in space. Different values of cloud optical depths, viewing geometries and solar zenith angles are used in the simulations. This sensitivity study shows that the normalized polarized radiance is highly sensitive to the shape of the scatterers for specific viewing geometries, and that it saturates after a few scattering events, which makes it rapidly independent of the optical depth of the cirrus clouds. Next, normalized polarized radiance observations obtained by POLDER have been selected, based on suitable viewing geometries and on the occurrence of thick cirrus clouds composed of particles randomly oriented in space. For various ice crystal shapes these observations are compared with calculated values pertaining to the same geometry, in order to determine the shape that best reproduces the measurements. The method is tested fully for the POLDER data collected on January 12, 1997. Thereafter, it is applied to six periods of 6 days of observations obtained in January, February, March, April, May, and June 1997. This study shows that the particle shape is highly variable with location and season, and that polycrystals and hexagonal columns are dominant at low latitudes, whereas hexagonal plates occur more frequently at high latitudes

    Measurement errors in cirrus cloud microphysical properties

    Get PDF

    Lidar signal simulation for the evaluation of aerosols in chemistry transport models

    Get PDF
    International audienceWe present an adaptable tool, the OPTSIM (OPTical properties SIMulation) software, for the simulation of optical properties and lidar attenuated backscattered profiles (beta') from aerosol concentrations calculated by chemistry transport models (CTM). It was developed to model both Level 1 observations and Level 2 aerosol lidar retrievals in order to compare model results to measurements: the level 2 enables to estimate the main properties of aerosols plume structures, but may be limited due to specific assumptions. The level 1, originally developed for this tool, gives access to more information about aerosols properties (beta') requiring, at the same time, less hypothesis on aerosols types. In addition to an evaluation of the aerosol loading and optical properties, active remote sensing allows the analysis of aerosols' vertical structures. An academic case study for two different species (black carbon and dust) is presented and shows the consistency of the simulator. Illustrations are then given through the analysis of dust events in the Mediterranean region during the summer 2007. These are based on simulations by the CHIMERE regional CTM and observations from the CALIOP space-based lidar, and highlight the potential of this approach to evaluate the concentration, size and vertical structure of the aerosol plumes

    Nitric Acid Particles in Cold Thick Ice Clouds Observed at Global Scale: Link with Lightning, Temperature, and Upper Tropospheric Water Vapor

    Get PDF
    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the Tropics (9 to 20% of clouds with T less than 202.5 K). Higher occurrences were found in the rare mid-latitudes very cold clouds. NAP occurrence increases as cloud temperature decreases and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning is the main source of the NOx, which forms NAP in cold clouds. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP play a role in the dehydration of the upper troposphere when the tropopause is colder than 195K
    • 

    corecore