11 research outputs found

    Multi-Label Continual Learning using Augmented Graph Convolutional Network

    Full text link
    Multi-Label Continual Learning (MLCL) builds a class-incremental framework in a sequential multi-label image recognition data stream. The critical challenges of MLCL are the construction of label relationships on past-missing and future-missing partial labels of training data and the catastrophic forgetting on old classes, resulting in poor generalization. To solve the problems, the study proposes an Augmented Graph Convolutional Network (AGCN++) that can construct the cross-task label relationships in MLCL and sustain catastrophic forgetting. First, we build an Augmented Correlation Matrix (ACM) across all seen classes, where the intra-task relationships derive from the hard label statistics. In contrast, the inter-task relationships leverage hard and soft labels from data and a constructed expert network. Then, we propose a novel partial label encoder (PLE) for MLCL, which can extract dynamic class representation for each partial label image as graph nodes and help generate soft labels to create a more convincing ACM and suppress forgetting. Last, to suppress the forgetting of label dependencies across old tasks, we propose a relationship-preserving constrainter to construct label relationships. The inter-class topology can be augmented automatically, which also yields effective class representations. The proposed method is evaluated using two multi-label image benchmarks. The experimental results show that the proposed way is effective for MLCL image recognition and can build convincing correlations across tasks even if the labels of previous tasks are missing

    Differentiable channel pruning guided via attention mechanism: a novel neural network pruning approach

    No full text
    Abstract Neural network pruning offers great prospects for facilitating the deployment of deep neural networks on computational resource limited devices. Neural architecture search (NAS) provides an efficient way to automatically seek appropriate neural architecture design for compressed model. It is observed that, for existing NAS-based pruning methods, there is usually a lack of layer information when searching the optimal neural architecture. In this paper, we propose a new NAS approach, namely, differentiable channel pruning method guided via attention mechanism (DCP-A), where the adopted attention mechanism is able to provide layer information to guide the optimization of the pruning policy. The training process is differentiable with Gumbel-softmax sampling, while parameters are optimized under a two-stage training procedure. The neural network block with the shortcut is dedicatedly designed, which is of help to prune the network not only on its width but also on its depth. Extensive experiments are performed to verify the applicability and superiority of the proposed method. Detailed analysis with visualization of the pruned model architecture shows that our proposed DCP-A learns explainable pruning policies

    Efficacy of sequential three-step empirical therapy for chronic cough

    No full text
    Background: Empirical three-step therapy has been proved in just one hospital. This study aimed to demonstrate applicability of the sequential empirical three-step therapy for chronic cough in different clinical settings. Methods: Sequential empirical three-step therapy was given to patients with chronic cough in one tertiary and three secondary care respiratory clinics. Recruiters were initially treated with methoxyphenamine compound as the first-step therapy, followed by corticosteroids as the second-step therapy and the combination of a proton-pump inhibitor and a prokinetic agent as the third-step therapy. The efficacy of the therapy was verified according to the changes in cough symptom score between pre- and post-treatment, and compared among the different clinics. Results: In total 155 patients in one tertiary clinic and 193 patients in secondary care clinics were recruited. The total dropout ratio is significantly higher in the secondary care clinics than that in the tertiary clinic (9.3% versus 3.2%, p = 0.023). The therapeutic success rate for cough was 38.7% at first-step therapy, 32.3% at second-step therapy and 20.0% at third-step therapy in the tertiary clinic, and comparable to corresponding 49.7%, 31.1% and 4.1% in secondary care clinics. Furthermore, the overall cough resolution rate was not significantly different (91.0% versus 85.0%, p = 0.091). However, the efficacy of the third-step therapy is much higher (20.0% versus 4.1%, p = 0.001) in the tertiary clinic than in the secondary care clinics. Conclusions: Sequential empirical three-step therapy is universally efficacious and useful for management of chronic cough in different clinical settings

    Comparative Analysis of the Systematics and Evolution of the <i>Pampus</i> Genus of Fish (Perciformes: Stromateidae) Based on Osteology, Population Genetics and Complete Mitogenomes

    No full text
    Pampus is a widespread species of fish in the western Pacific and Indian Oceans that has significant commercial worth. Its evolutionary history and phylogenetics are still poorly understood, and details on its intraspecific taxonomy are debatable, despite some morphological and molecular research. Here, we analyzed this species using skeletal structure data as well as nuclear (S7 gene) and mitochondrial genetic information (COI, D-loop and mitogenomes). We found that the genetic distance between P. argenteus and P. echinogaster was much smaller than that between other Pampus species, and both maximum likelihood and Bayesian phylogenetic trees yielded almost identical tree topologies. An additional and adjacent M repeat was found in the downstream region of the IQM gene cluster of P. argenteus and P. echinogaster, and the trnL2 gene of P. minor was translocated. The genus Pampus experienced early rapid radiation during the Palaeocene with major lineages diversifying within a relatively narrow timescale. Additionally, three different methods were conducted to distinguish the genus Pampus species, proving that P. argenteus and P. echinogaster are the same species, and P. liuorum is speculated to be a valid species. Overall, our study provides new insights not only into the evolutionary history of Pampus but its intraspecific taxonomy as well

    MTHFR Ala222Val polymorphism and clinical characteristics confer susceptibility to suicide attempt in chronic patients with schizophrenia

    No full text
    Patients with schizophrenia (SCZ) exhibit higher suicide rates than the general population. However, the molecular mechanism responsible for the high rate of suicidal behavior in SCZ remains poorly understood. MTHFR Ala222Val (C677T; rs 1801133) polymorphism has repeatedly demonstrated to play a pathological role in numerous mental disorders, but none of these studies focused on the susceptibility of suicidal behavior in SCZ. In the present cross-sectional study, we recruited 957 chronic inpatients with SCZ and 576 healthy controls to assess the psychopathological symptoms of SCZ and compare the frequency of the MTHFR Ala222Val genotype in both suicide attempters and non-attempters. Our results demonstrated no significant differences in MTHFR Ala222Val genotype and allele distributions between the SCZ patients and controls (p > 0.05), but showed a statistical significance in the distribution of Ala/Val genotype between suicide attempters and non-attempters (p < 0.05). Further logistic regression analysis showed that MTHFR Ala222Val genotype, psychopathological symptoms, number of cigarettes smoked per day and drinking status were related to suicide attempts in SCZ (p < 0.05). Our study demonstrated that MTHFR Ala222Val polymorphism and some clinical characteristics might confer susceptibility to suicide in patients with SCZ
    corecore