96 research outputs found
Membrane repair against H. pylori promotes cancer cell proliferation
Membrane repair is a universal response against physical and biological insults and enables cell survival. Helicobacter pylori is one of the most common human pathogens and the first formally recognized bacterial carcinogen associated with gastric cancer. However, little is known about host membrane repair in the context of H. pylori infection. Here we show that H. pylori disrupts the host plasma membrane and induces Ca2+ influx, which triggers the translocation of annexin family members A1 and A4 to the plasma membrane. This in turn activates a membrane repair response through the recruitment of lysosomal membranes and the induction of downstream signaling transduction pathways that promote cell survival and proliferation. Based on our data, we propose a new model by which H. pylori infection activates annexin A1 and A4 for membrane repair and how annexin A4 over-expression induced signaling promotes cell proliferation. Continual activation of this membrane repair response signaling cascade may cause abnormal cellular states leading to carcinogenesis. This study links H. pylori infection to membrane repair, providing insight into potential mechanisms of carcinogenesis resulting from membrane damage
Pyogenic Liver Abscess as Endemic Disease, Taiwan
Increasing incidence and microbiologic shift might have changed the manifestation of this condition
Prophage Excision in Streptococcus pneumoniae Serotype 19A ST320 Promote Colonization: Insight Into Its Evolution From the Ancestral Clone Taiwan 19F-14 (ST236)
Streptococcus pneumoniae 19A ST320, a multidrug-resistant strain with high disease severity that notoriously spread before the use of expanded pneumococcal conjugate vaccines, was derived from a capsular switching event between an international strain Taiwan 19F-14 (ST236) and a serotype 19A strain. However, the molecular mechanisms underlying the adaptive evolution of 19F ST236 to 19A ST320 are unknown. In this study, we compared 19A ST320 to its ancestral clone, 19F ST236, in terms of adherence to respiratory epithelial cells, whole transcriptome, and ability to colonize a young mouse model. Serotype 19A ST320 showed five-fold higher adherence to A549 cells than serotype 19F ST236. High-throughput mRNA sequencing identified a prophage region located between dnaN and ychF in both strains; however, the genes in this region were expressed at significantly higher levels in 19A ST320 than in 19F ST236. Analysis by polymerase chain reaction (PCR) showed that the prophage is able to spontaneously excise from the chromosome and form a circular episome in 19A ST320, but not in 19F ST236. Deletion of the integrase in the prophage of 19A ST320 decreased spontaneous excision and cell adherence, which were restored by complementation. Competition experiments in mice showed that the integrase mutant was six-fold less competitive than the 19A ST320 parent (competitive index [CI]: 0.16; p = 0.02). The 19A ST320 prophage-deleted strain did not change cell adherence capacity, whereas prophage integration strains (integrase mutant and 19F) had decreased expression of the down-stream ychF gene compared to that of 19A ST320. Further deletion of ychF significantly reduced cell adherence. In conclusions, these findings suggest that spontaneous prophage induction confers a competitive advantage to virulent pneumococci
Genomic diversity of citrate fermentation in Klebsiella pneumoniae
<p>Abstract</p> <p>Background</p> <p>It has long been recognized that <it>Klebsiella pneumoniae </it>can grow anaerobically on citrate. Genes responsible for citrate fermentation of <it>K. pneumoniae </it>were known to be located in a 13-kb gene cluster on the chromosome. By whole genome comparison of the available <it>K. pneumoniae </it>sequences (MGH 78578, 342, and NTUH-K2044), however, we discovered that the fermentation gene cluster was present in MGH 78578 and 342, but absent in NTUH-K2044. In the present study, the previously unknown genome diversity of citrate fermentation among <it>K. pneumoniae </it>clinical isolates was investigated.</p> <p>Results</p> <p>Using a genomic microarray containing probe sequences from multiple <it>K. pneumoniae </it>strains, we investigated genetic diversity among <it>K. pneumoniae </it>clinical isolates and found that a genomic region containing the citrate fermentation genes was not universally present in all strains. We confirmed by PCR analysis that the gene cluster was detectable in about half of the strains tested. To demonstrate the metabolic function of the genomic region, anaerobic growth of <it>K. pneumoniae </it>in artificial urine medium (AUM) was examined for ten strains with different clinical histories and genomic backgrounds, and the citrate fermentation potential was found correlated with the genomic region. PCR detection of the genomic region yielded high positive rates among a variety of clinical isolates collected from urine, blood, wound infection, and pneumonia. Conserved genetic organizations in the vicinity of the citrate fermentation gene clusters among <it>K. pneumoniae</it>, <it>Salmonella enterica</it>, and <it>Escherichia coli </it>suggest that the13-kb genomic region were not independently acquired.</p> <p>Conclusion</p> <p>Not all, but nearly half of the <it>K. pneumoniae </it>clinical isolates carry the genes responsible for anaerobic growth on citrate. Genomic variation of citrate fermentation genes in <it>K. pneumoniae </it>may contribute to metabolic diversity and adaptation to variable nutrient conditions in different environments.</p
Detection of SARS-associated Coronavirus in Throat Wash and Saliva in Early Diagnosis
Early detection of SARS-CoV in throat wash and saliva suggests that these specimens are ideal for SARS diagnosis
Differentiation-Inducing Factor-1 and -2 Function also as Modulators for Dictyostelium Chemotaxis
BackgroundIn the early stages of development of the cellular slime mold Dictyostelium discoideum, chemotaxis toward cAMP plays a pivotal role in organizing discrete cells into a multicellular structure. In this process, a series of signaling molecules, such as G-protein-coupled cell surface receptors for cAMP, phosphatidylinositol metabolites, and cyclic nucleotides, function as the signal transducers for controlling dynamics of cytoskeleton. Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2) were originally identified as the factors (chlorinated alkylphenones) that induce Dictyostelium stalk cell differentiation, but it remained unknown whether the DIFs had any other physiologic functions.Methodology/Principal FindingsTo further elucidate the functions of DIFs, in the present study we investigated their effects on chemotaxis under various conditions. Quite interestingly, in shallow cAMP gradients, DIF-1 suppressed chemotaxis whereas DIF-2 promoted it greatly. Analyses with various mutants revealed that DIF-1 may inhibit chemotaxis, at least in part, via GbpB (a phosphodiesterase) and a decrease in the intracellular cGMP concentration ([cGMP]i). DIF-2, by contrast, may enhance chemotaxis, at least in part, via RegA (another phosphodiesterase) and an increase in [cGMP]i. Using null mutants for DimA and DimB, the transcription factors that are required for DIF-dependent prestalk differentiation, we also showed that the mechanisms for the modulation of chemotaxis by DIFs differ from those for the induction of cell differentiation by DIFs, at least in part.Conclusions/SignificanceOur findings indicate that DIF-1 and DIF-2 function as negative and positive modulators for Dictyostelium chemotaxis, respectively. To our knowledge, this is the first report in any organism of physiologic modulators (small molecules) for chemotaxis having differentiation-inducing activity
Validation of an updated Associative Transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds
An updated platform was developed to underpin association genetics studies in the polyploid crop species Brassica napus (oilseed rape). Based on 1.92 × 1012 bases of leaf mRNAseq data, functional genotypes, comprising 355 536 single-nucleotide polymorphism markers and transcript abundance were scored across a genetic diversity panel of 383 accessions using a transcriptome reference comprising 116 098 ordered coding DNA sequence (CDS) gene models. The use of the platform for Associative Transcriptomics was first tested by analysing the genetic architecture of variation in seed erucic acid content, as high-erucic rapeseed oil is highly valued for a variety of applications in industry. Known loci were identified, along with a previously undetected minor-effect locus. The platform was then used to analyse variation for the relative proportions of tocopherol (vitamin E) forms in seeds, and the validity of the most significant markers was assessed using a take-one-out approach. Furthermore, the analysis implicated expression variation of the gene Bo2g050970.1, an orthologue of VTE4 (which encodes a γ-tocopherol methyl transferase converting γ-tocopherol into α-tocopherol) associated with the observed trait variation. The establishment of the first full-scale Associative Transcriptomics platform for B. napus enables rapid progress to be made towards an understanding of the genetic architecture of trait variation in this important species, and provides an exemplar for other crops
Microglia Are Mediators of Borrelia burgdorferi–Induced Apoptosis in SH-SY5Y Neuronal Cells
Inflammation has long been implicated as a contributor to pathogenesis in many CNS illnesses, including Lyme neuroborreliosis. Borrelia burgdorferi is the spirochete that causes Lyme disease and it is known to potently induce the production of inflammatory mediators in a variety of cells. In experiments where B. burgdorferi was co-cultured in vitro with primary microglia, we observed robust expression and release of IL-6 and IL-8, CCL2 (MCP-1), CCL3 (MIP-1α), CCL4 (MIP-1β) and CCL5 (RANTES), but we detected no induction of microglial apoptosis. In contrast, SH-SY5Y (SY) neuroblastoma cells co-cultured with B. burgdorferi expressed negligible amounts of inflammatory mediators and also remained resistant to apoptosis. When SY cells were co-cultured with microglia and B. burgdorferi, significant neuronal apoptosis consistently occurred. Confocal microscopy imaging of these cell cultures stained for apoptosis and with cell type-specific markers confirmed that it was predominantly the SY cells that were dying. Microarray analysis demonstrated an intense microglia-mediated inflammatory response to B. burgdorferi including up-regulation in gene transcripts for TLR-2 and NFκβ. Surprisingly, a pathway that exhibited profound changes in regard to inflammatory signaling was triggering receptor expressed on myeloid cells-1 (TREM1). Significant transcript alterations in essential p53 pathway genes also occurred in SY cells cultured in the presence of microglia and B. burgdorferi, which indicated a shift from cell survival to preparation for apoptosis when compared to SY cells cultured in the presence of B. burgdorferi alone. Taken together, these findings indicate that B. burgdorferi is not directly toxic to SY cells; rather, these cells become distressed and die in the inflammatory surroundings generated by microglia through a bystander effect. If, as we hypothesized, neuronal apoptosis is the key pathogenic event in Lyme neuroborreliosis, then targeting microglial responses may be a significant therapeutic approach for the treatment of this form of Lyme disease
World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions
BACKGROUND: To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. METHODS: In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. FINDINGS: Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0·685 (95% CI 0·629-0·741) to 0·833 (0·783-0·882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. INTERPRETATION: We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. FUNDING: World Health Organization, British Heart Foundation (BHF), BHF Cambridge Centre for Research Excellence, UK Medical Research Council, and National Institute for Health Research
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
- …