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Membrane repair is a universal response against physical and biological insults 

and enables cell survival1-3. Helicobacter pylori is one of the most common 

human pathogens and the first formally recognized bacterial carcinogen 

associated with gastric cancer4. However, little is known about host membrane 

repair in the context of H. pylori infection. Here we show that H. pylori disrupts 

the host plasma membrane and induces Ca2+ influx, which triggers the 

translocation of annexin family members A1 and A4 to the plasma membrane. 

This in turn activates a membrane repair response through the recruitment of 

lysosomal membranes and the induction of downstream signaling transduction 

pathways that promote cell survival and proliferation. Based on our data, we 

propose a new model by which H. pylori infection activates annexin A1 and A4 

for membrane repair and how annexin A4 over-expression induced signaling 

promotes cell proliferation. Continual activation of this membrane repair 

response signaling cascade may cause abnormal cellular states leading to 

carcinogenesis. This study links H. pylori infection to membrane repair, 

providing insight into potential mechanisms of carcinogenesis resulting from 

membrane damage. 

Injury to mammalian cells by different forms of extracellular stressors evokes 

a survival response, whereby the cell responds via an influx of Ca2+. This process 



triggers many protein pathways that mediate patch vesicles and induce exocytosis of 

endomembranes to fuse to the site of disruption2,5,6. To test the hypothesis that H. 

pylori infection damages host plasma membrane integrity, we used a 

membrane-impermeant fluorescein isothiocyanate-dextran (FDx) as a marker for 

detecting membrane breaks7. In our study, the presence of FDx was demonstrated in 

the cytoplasm and at breach sites of infected cells (Fig. 1a). To exclude the 

possibility that the presence of intracellular dextrans were due to fluid phase 

endocytosis or pinocytosis induced by H. pylori secreting cytotoxins, we treated 

AGS cells with cytochalasin B, which blocks the formation of contractile 

microfilaments and inhibits actin polymerization8. We were thereby able to show 

that FDx was detected in non-infected cells that had not been treated with 

cytochalasin B (Fig. 1b), whereas FDx was undetectable with cytochalasin B 

treatment (Fig. 1c). Additionally, after H. pylori infection, FDx can be detected in 

the cytoplasm despite cytochalasin B treatment (Fig 1d).  

Considering that Ca2+ plays an important role in triggering other molecules to 

execute wound healing2,6, we investigated whether intracellular Ca2+ levels would 

change following H. pylori infection. Consistent with previous reports9,10, our results 

showed increased levels of intracellular Ca2+ in H. pylori infected cells (Fig. 1e). 

Previous reports have demonstrated the involvement of annexin A1 in plasma 



membrane repair using a blocking antibody to prevent the plasma membrane from 

resealing11. Annexins are classed as Ca2+ and phospholipid binding proteins by their 

conserved core domain, and they are implicated in membrane trafficking and vesicle 

aggregation12. To determine whether H. pylori infection participates in the 

membrane repair system, we used annexin A1 to investigate this pathway in H. 

pylori infected cells. There is currently no evidence to suggest a relationship between 

annexin A1 and H. pylori in the literature. In this investigation, we stained annexin 

A1 in H. pylori infected SC-M1 cells and measured its expression by confocal 

microscopy. As seen in Figure 1f, annexin A1 staining was clearly demonstrated 

around the plasma membrane of these cells. These results suggest that H. pylori 

infection leads to plasma membrane disruptions and is involved in the membrane 

repair response. 

Compared to other annexins, annexin A1 and A4 have lower sensitivities to 

Ca2+, and they require prolonged elevations of intracellular calcium concentrations 

([Ca2+]i) to associate with the intracellular membrane13. Previous studies have 

shown that binding of annexin A4 to phospholipids is dependent on Ca2+. After 

treatment with the Ca2+ ionophore, ionomycin, which elevates Ca2+ level in the 

cytoplasm, annexin A4 translocates to the plasma membrane and subsequently to the 

nuclear membrane in three different cell lines12,14. To confirm the role of annexin A4 



in this study, we increased intracellular Ca2+ levels with ionomycin in gastric cancer 

cells (Fig. 2a) to replicate the translocation of annexin A4 previously reported using 

confocal microscopy (Fig 2b). In our previous results, we had found over-expression 

of annexin A4 in gastric cancer patients and cells with H. pylori infection15. To 

determine whether annexin A4 plays an important role in the process of host cells 

with H. pylori infection, we monitored the location of annexin A4 in cells taken 

from two different gastric tumors, AGS and SC-M1, which were transfected with 

EGFP-annexin A4 (green fluorescent protein) fusion protein and then infected with 

Hoechst-labeled H. pylori by time-lapse microscopy. In the absence of infection, 

annexin A4 expression was abundant throughout the cell, including within the 

cytoplasm and nucleus (Fig. 2b). Following H. pylori contact with the cell surface 

membrane, annexin A4 gradually accumulated at the sites of infection on the plasma 

membrane (Fig. 2c, d and Supplementary Movie 1 and 2). We also determined the 

localization of annexin A1 and A4 with and without infection to explore whether 

similar biological processes were involved for these annexins in H. pylori infected 

host cells. Co-localization of annexin A1 and A4 was observed in the plasma 

membrane (Fig. 2e). These results suggest that the Ca2+ influx seen in H. pylori 

infection can induce annexin A1 and A4 aggregation in the plasma membrane. 

To determine whether annexin A4 translocates to plasma membrane to protect 



the host cell after infection, we over-expressed annexin A4 or knocked down 

annexin A4 expression using small interfering RNA (siRNA) in AGS cells before 

infection. As expected, a significant influx of FDx appeared in annexin 

A4-knockdown cells in comparison to control siRNA transfected cells (Fig. 3a). 

Additionally, greater levels of FDx were observed in the cytoplasm of cells 

transfected with empty vector compared to cells over-expressing annexin A4 (Fig. 

3b).  

Resealing of plasma membrane is facilitated by the recruitment of intercellular 

vesicles derived from the endoplasmic reticulum, Golgi compartment and 

lysosomes16,17. We explored the mechanisms underlying membrane fusion and 

looked at the differential gene expression between annexin A4 over-expressing cells 

and vector-expressing cells using exon array analysis. There were 47 genes (≥1.5 

fold) which were classed as plasma membrane proteins in annexin A4 

over-expressing cells (Supplementary Table 1). Among these genes, we used 

lysosomal-associated membrane protein 2 (LAMP-2), a specific marker of 

lysosomes18 to determine whether H. pylori infection and annexin A4 are capable of 

recruiting lysosomal membranes to the cell surface. LAMP-2 was shown to be 

upregulated by annexin A4 using immunoblotting assay (Fig 3c). Following flow 

cytometry analysis, we found that the cell surface of infected cells expressed more 



LAMP-2 compared to non-infected cells (Fig. 3d). When we evaluated the influence 

of annexin A4 on LAMP-2 translocation to the cell surface, we found that annexin 

A4 over-expression increased LAMP-2 expression on the surface of infected cells 

(Fig. 3e). This is in contrast to the silencing annexin A4 (Fig. 3f). Based on this data, 

it is possible that annexin A4 inhibits membrane lesions by recruiting lysosome 

membranes to promote the plasma membrane repair response (Supplementary 

Movie 3). Over-expression of annexin A4 has been reported as a feature in different 

types of cancer, including gastric cancer15,19. However, the mechanism of annexin 

A4 associated with gastric cancer is not clear. 

To elucidate the role of annexin A4 in carcinogenesis, we also performed exon 

array for downstream genes expressed in annexin A4-over-expressing cells. Exon 

array offers a more accurate view of gene-level expression with four probes per 

exon20. Among the annexin A4-induced plasma membrane proteins (Supplementary 

Table 1), hyaluronan-mediated motility receptor (RHAMM), an oncogene that has 

been shown to be over-expressed in several cancers, including gastric cancer21, 

showed increased gene expression (fold change = 2.4). Moreover, its differential 

expression was supported by immunoblotting (Fig. 4a). RHAMM has been 

implicated in many cellular processes including signaling, cell proliferation, and 

tumorigenesis22. In signaling transduction, RHAMM has been reported to induce the 



RAS signaling cascade23 and is downregulated by tumor suppressor p5324. The RAS 

signaling cascade transduces downstream signals by activating phospho-Akt through 

PI3K. Here, we found that annexin A4 activated phospho-Akt (Fig. 4b) and 

downregulated p53 and p21 expression using immunoblotting assay (Fig. 4c). 

Previous studies have shown that p53 expression is degraded by MDM2 which is 

induced by phospho-Akt activation25. We found that annexin A4 upregulates MDM2 

as consistent with previous findings (Fig. 4d).  

Using the IPA database, we performed gene function analysis of the 

microarray data and found that 25 of 42 genes (≥ 2 fold differential expression, t-test, 

p<0.05) (Supplementary Table 2) were eligible for network function analysis. The 

top ranked network was “cancer, cell cycle, and reproductive system disease” 

(Supplementary Fig. 1a), and the top-ranked disease was “cancer” (Supplementary 

Fig. 1b). Cyclin-dependent kinase 1 (CDC2) and PDZ binding kinase (PBK) were 

classed as cancer-related genes in annexin A4 over-expressing cells (Supplementary 

Fig. 1b and Table 2) and involved in the annexin A4 inducing model. These 

differences were supported using qRT-PCR analysis (Fig. 4d). The mutual activation 

of CDC2 and PBK has been reported26 and p53 mediates the G2/M phase 

checkpoint via activation of p21 to inhibit CDC227. CDC2 activation inhibits G2/M 

phase arrest to maintain mitosis and enables cell proliferation. In cell proliferation 



assays, annexin A4 overexpressing cells increased the growth rate significantly 

(p<0.001) (Fig. 4e) whereas annexin A4 knockdown decreased the growth rate 

significantly (p<0.001) (Fig. 4f). This may explain why long-term H.pylori infection 

increases cell growth and induces gastric cancer in mongolian gerbils28. Taken 

together, our results indicate that annexin A4 over-expression induces RHAMM to 

activate phospho-Akt, which then upregulates MDM2 to suppress p53 and p21. This 

subsequently raises PBK and CDC2 expression and ultimately causes cell 

proliferation and carcinogenesis (Fig. 4g). 

In this study, we showed that annexin A4 is involved in the membrane repair 

response during H. pylori infection and when over-expressed, has the proliferation 

capacity to induce downstream signals to respond to long-term infection. Our study 

provides insight into the membrane repair response induced in host cell during 

bacterial infection. However, over-expression of these proteins and the maintenance 

of their activation in the host cell may predispose to carcinogenesis. The findings of 

this study provide a potential new target for gastric cancer therapy directed at 

blocking these membrane repair associated proteins. 

 
 
METHODS SUMMARY 

Plasmids and transfections. pcDNA3.1(+)⁄pEGFP-C1-annexin A4 and annexin A4 

specific siRNA (Stealth™ RNAi, Invitrogen) in AGS (CRL-1739) or SC-M1 cells 



were utilized in this study. Cells were grown as described in Methods, and 

transiently transfected following the manufacturer's instructions. After transfection 

for 48 hours, differential expression of proteins and genes were detected.  

Bacteria. H. pylori (NTUH-GC05) strain (cagA+⁄vacA+) was isolated from the 

stomach of a gastric cancer male patient. The multiplicity of infection for all 

infection experiments was 150.  

Immunofluorescence. To determine annexin A4 localization in host cells after H. 

pylori infection, cells were transfected with pEGFP-C1-annexin A4 before infection. 

H. pylori were stained with Hoechst 33258. Fluorescence images of living cells were 

captured by real-time fluorescence microscopy. Cells were treated with cytochalasin 

B before infection, or treated with FDx after infection to observe disruption sites. 

After infection, cells were fixed and incubated with appropriate primary and 

secondary antibodies. Immunostaining of cells were imaged by confocal microscopy 

(Zeiss LSM 510). 

Cell proliferation assay. AGS cells were loaded in a 96-well microtiter E-plate and 

transfected with expression vectors or siRNAs. Cells were then monitored for a total 

of 84 hours. The level of cell proliferation is shown as cell index (CI) based on 

measured electrical impedance by xCELLigence system (Roche). All detailed 

experimental procedures are described in Methods. 
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Figure Legends 

Figure 1 | Plasma membrane microinjury, intracellular Ca2+ level 

elevation and annexin A1 translocation in cells are caused by H. pylori 

infection. a-d, Plasma membrane integrity in cells labeled with fluorescein 

isothiocyanate-dextran (FDx; green) were monitored. a, FDx was detected in 

AGS and SC-M1 cells after H. pylori (labeled with Cy 5; blue) infection. b-d, 

AGS cells were treated with cytochalasin B. b, Without cytochalasin B 

treatment, fewer FDx were seen along the plasma membrane of non-infected 

cells. The nucleus was stained with Hoechst 33258 (blue) c, With 

cytochalasin B treatment, FDx were not observed in non-infected cells, (d) 

but were found in the infection sites and cytoplasm of host cells after H. pylori 

(labeled with TRITC; red) infection. e, AGS cells were loaded with Fluo-3/AM 

to monitor intracellular Ca2+ level by flow cytometry. f, Immunofluorescence 

showed that annexin A1 (labeled with FITC; green) translocated to the 

plasma membrane of SC-M1 cells after H. pylori (labeled with Cy5; blue) 

infection. Scale bar, 10 μm. 

Figure 2 | Dynamic localization of annexin A4 in the living cell and 

co-localization of annexin A1 and A4 in the plasma membrane after H. 

pylori infection. a, Cells were treated with ionomycin (calcium ionophore, 5 



μM). Ca2+ increases in the cells was measured using flow cytometry. b, 

Immunofluorescence showed that the localization of annexin A1 (labeled with 

FITC; green) and A4 (labeled with TRITC; red) was changed in the 

ionomycin-treated cells using confocal microscopy. Scale bar, 2 μm. c-d, 

Real-time fluorescence images showed localization of EGFP-annexin A4 in 

the living cell, (c) AGS and (d) SC-M1, after H. pylori infection ((yellow arrow) 

stained with Hoechst 33258). Films were collected from Supplementary 

Movie 1 (c, AGS cells) and Supplementary Movie 2 (d, SC-M1 cells), which 

indicate that annexin A4 aggregates to the sites of infection and the plasma 

membrane. e, Immunofluorescence of annexin A1 (labeled with FITC; green) 

co-localized with annexin A4 (labeled with TRITC; red) in the plasma 

membrane of AGS and SC-M1 cells after H. pylori (labeled with Cy5; blue) 

infection. The translocation of annexin A1 and A4 after H. pylori infection is 

marked by a white arrow.  

Figure 3 | Annexin A4 participates in plasma membrane repair by 

recruiting lysosome-derived vesicles 

a-b, Fluorescence images of FDx levels in AGS cells with H. pylori (labeled 

with Cy5 dye; red) infection showed the impact of annexin A4 on membrane 

microinjury. a, Knockdown of annexin A4 increased FDx into the cytoplasm. 



On the contrary, (b) over-expression of annexin A4 decreased FDx in the cell. 

Scale bar, 10 μm. c, Immunoblotting of LAMP-2 expression were shown in 

annexin A4 over-expressing cells and in annexin A4 knockdown cells. d, 

LAMP-2 fluorescence on the surface of cells were enhanced in AGS cells 

after H. pylori infection compared with non-infected cells. e-f, Representative 

flow cytometry analysis of LAMP-2 in cells (e) over-expressing annexin A4 

compared to (f) silencing annexin A4, and the analysis indicated that annexin 

A4 promotes LAMP-2 expression on the surface of infected cells. 

Figure 4 | Annexin A4 induces downstream signaling transduction 

which leads to cell proliferation. a-c, Representative immunoblots showing 

the expression of (a) RHAMM, (b) phospho-AKT (Ser473) and (c) p53 and 

p21 are regulated by annexin A4 in AGS cells. d, qRT-PCR assay in AGS 

cells after enforced annexin A4 expression (black boxes) was performed to 

confirm exon array data (grey boxes). These relative mRNA levels of CDC2, 

PBK, MDM2 and TP53 were measured and normalized to GAPDH. e-f, For 

the cell proliferation assay, AGS cells (1x104 cells/well) were plated at a 

96-well microtiter E-Plate. After incubation for 24 hours, the cell growth rate of 

(e) cells over-expressing annexin A4 and (f) cells with siRNA known down of 

annexin A4 were measured using xCELLigence real-time cell analyzer 



system. Annexin A4 regulated cell index in a time-dependent manner. Data 

were normalized at the time of 24 hours, the starting transfection time, and 

p-values were calculated using the two sample Kolmogorov-Smirnov test. 

The mean and standard deviation of each detection time is from three 

independent experiments. g, The model responds to the annexin A4 function 

in the cell infected with H. pylori. Thus, when annexin A4 is over-expressed in 

the cell, this could lead to cellular proliferation by downstream signaling 

transduction. The expression of RHAMM, AKT, MDM2, PBK and CDC2 were 

upregulated (shown in a red oval plate) and p53 and p21 were 

down-regulated (shown in a green oval plate) by annexin A4. Ras and PI3K 

were supported in previous reports (shown in a blue oval plate).  



METHODS 

Cell lines and culture conditions. Human stomach adenocarcinoma AGS (CRL-1739; 

ATCC) and SC-M1 (cultured from a poorly differentiated adenocarcinoma that showed 

no metastasis to lymph nodes or adjacent organs)29 cells, were grown in 90% RPMI 

1640 medium (biological industries) supplemented with 1% penicillin/streptomycin 

and 10% fetal bovine serum (biological industries). Cells were cultured at 37 oC in an 

incubator with controlled humidified atmosphere containing 5% CO2. 

Bacteria. H. pylori (NTUH-GC05) strain (cagA+/vacA+) was isolated from the 

stomach of a gastric cancer male patient at National Taiwan University Hospital and 

generously provided by Dr. Yo-Ping Lai. The character of the strain has previously 

been described30,31. H. pylori was grown on Columbia blood agar (BD) containing 

5% sheep blood and incubated for 2–3 days in microaerophilic conditions (5% O2, 

10% CO2, 85% N2) at 37 oC.  

Plasmids and transfections. The full length of annexin A4 was amplified by PCR 

with the following primers, forward: 

5’-ATATAAGCTTGCCACCATGGCCATGGCAACCAAA-3’ and reverse: 

5’-GCGCGGGAATTCTTAATCATCTCCTCCACA-3’, and inserted into the 

HindIII/EcoRI sites of pcDNA3.1(+) (Invitrogen). For immunofluorescence analysis, 

annexin A4 was amplified by PCR with the following primers: forward: 



5’-ATATAAGCTTGCCACCATGGCCATGGCAACCAAA-3’ and reverse: 5’- 

AGCGCGCCTGCAGTTAATCATCTCCTCCACA-3’, and inserted into the 

HindIII/pst I sites of pEGFP-C1 (BD Clontech). Annexin A4 specific siRNA and 

negative control Stealth siRNA were purchased from Invitrogen (Stealth™ RNAi). 

Cells were plated in 6-well plates or coated cover slips for 24 hours. Cells were then 

transiently transfected with pcDNA 3.1(+)/pEGFP-C1-annexin A4 (8 μg for 6-well 

plate (each well); 0.4 μg for 96-well E-plate (each well)) or annexin A4 siRNA (100 

pmole for 6-well plate (each well); 10 pmole for 96-well E-plate (each well)) using 

Lipofectamine 2000 (Invitrogen) following the manufacturer's instructions. 

Expression vector and siRNA transfection efficiency was determined by qRT-PCR 

and immunoblotting. After transfection for 48 hours, differential expression of 

proteins and genes were detected. 

Antibodies. The mouse monoclonal antibodies used in this study include: annexin A1 

(sc-12740) and p53 (sc-126) form Santa Cruz Biotechnology, LAMP-2 (ab25631) 

and RHAMM (ab67003) from Abcam, IgG-1 isotype (555746; BD), α-tubulin 

(T5168; Sigma). The rabbit polyclonal antibodies included: H. pylori (AHP602H; 

AbD serotec), annexin A4 (sc-28827) and p21 (sc-397) from Santa Cruz 

Biotechnology, Akt (9272) and phospho-Akt (Ser473; 9271S) from Cell Signaling 

Technology. The goat polyclonal antibody included: annexin A4 (sc-1930; Santa 



Cruz Biotechnology). 

Living cell imaging. To determine annexin A4 localization after H. pylori infection, 

AGS or SC-M1 cells (3 × 105/well) were plated in coated chamber slides (Nunc). 

After 24 hours incubation, cells were transfected with pEGFP-C1-annexin A4 (8 μg) 

for 48 hours before infection. H. pylori were re-suspended with serum-free culture 

medium and stained with Hoechst 33258 (Sigma) for 1 hour, centrifuged, washed 

twice and then re-suspended with fresh serum-free culture medium. Cultured cells 

were replaced with fresh serum-free culture medium (1 ml per well) and infected 

with H. pylori at a multiplicity of infection (MOI) of 150. Fluorescence images of 

living cells were captured by fluorescence microscopy (SC-M1: Zeiss Axiovert 

200M with 100x oil lens; AGS: Nikon A1 confocal microscopy with 60x oil lens). 

Images were arranged by using MetaMorph (Molecular Devices) software. 

Confocal microscopy. Cells (8 × 105 cells/well) were plated onto glass cover slips 

coated with poly-L-lysine in 6-well plates. To observe disruption site, cells were 

treated with cytochalasin B (10 μg/ml) for 1 hour before infection, or treated with 

FDx (5 mg/ml; 10 kDa) for 30 min after infection for 2.5 hours. After infection 

(MOI = 150) for 3 hours, cells were fixed with 4% paraformaldehyde for 15 minutes, 

permeabilized with 1% Triton-X-100 in PBS for 30 minutes and blocked with 0.1% 

BSA/PBS overnight at 4 oC. Cells were incubated with mouse anti-annexin A1 



antibody (1:100), goat anti-annexin A4 antibody (1:100) or rabbit anti-H. pylori 

antibody (100 μl) for 1 hour at room temperature. After washing, secondary 

antibodies: FITC-labeled anti-mouse antibody (Sigma), TRITC-labeled anti-goat 

antibody (Sigma) or Cy5-labeled anti-rabbit antibody (Millipore) were used at 1:100 

dilution and applied for 1 hour at room temperature. The cover slips were then 

washed and mounted onto slides. Immunostaining of cells were observed by 

confocal microscopy with a Plan-Apochromat 63x/1.40 oil M27 objective (Zeiss 

LSM 510) 

Exon array hybridization and analysis. We compared the gene expression profiles 

between the cells transfected with pcDNA3.1(+)/annexin A4 and control (empty 

vector) to study the annexin A4 involved downstream genes using Exon array 

technique. Total cellular RNA was extracted with the use of TRIzol reagent 

(Invitrogen) and purity was confirmed by spectrophotometry (A260/A280 ratio) and 

capillary electrophoresis (Agilent 2100 Bioanalyzer, Agilent). RNA processing and 

hybridization onto Affymetrix Human Exon 1.0 ST arrays were performed according 

to the manufacturer’s protocol. Microarray (n = 2 per group) analysis was performed 

using Partek Genomics Suite version 6.5 (Partek Inc.). CEL data were normalized 

using RMA and statistically tested using t-tests and a total of 1052 gene expressions 

were found to be significantly different (p<0.05). To identify the function and 



biological mechanism of data, we applied Ingenuity Pathway Analysis (IPA) database 

version 7.5, a score of 3 or above is considered statistically significant (p<0.01), to 

annotate the information. 

Flow Cytometry. Measurement of intercellular [Ca 2+]i in infected cells (MOI = 

150) for 3 hours and non infected cells were washed in HBSS buffer and then loaded 

with 4 μM of the Ca 2+ indicator, Fluo-3-AM /pluronic acid F-127, for 1 hour at 37 

oC. Subsequently, cells were harvested by trypsin and then resuspended in HBSS 

buffer. The Ca2+ ionophore, ionomycin (5 μM) was added to cells and cultured for 

10 minutes as a positive control of increased Ca2+ in the cytoplasm. To determine 

the expression of cell surface LAMP-2, cells were re-suspended in PBS and then 

fixed with 2% paraformaldehyde, centrifuged, washed in PBS and blocked with 2% 

BSA/PBS for 15 minutes. The mouse anti-LAMP-2 antibody and mouse IgG-1 

isotype control (Supplementary Fig. 2) was used at 1:200 dilution for 30 minutes at 

room temperature, washed and then stained with anti-FITC secondary antibody for 

30 minutes at RT. Cells were washed and fixed with 4% paraformaldehyde. 

Fluorescence intensity was determined by FACscalibur System (BD Biosciences) 

and the data of each sample was analyzed using at least 10,000 cells. 

Immunoblotting. Cell lysates were prepared from AGS cells (8 × 105 cells/well in 

6-well plates) which were transiently transfected with the expression vectors pcDNA 



3.1(+)-annexin A4 (8 μg) or annexin A4 siRNA (100 pmole). Samples were 

separated by 10% SDS-PAGE and then transferred onto PVDF membranes 

(Millipore). After blocking in 5% nonfat milk and TBST containing 0.1% Tween 20 

(JT Baker) for 1 hour at room temperature with gentle rocking, the primary 

antibodies used were: anti-annexin A4 (1:1,000), p53 (1:1,000), p21 (1:500) 

antibody, Akt (1:500), phospho-Akt (Ser473; 1:500) antibody, and RHAMM 

antibody (1:400). Membranes were incubated with secondary antibodies of goat 

anti-mouse conjugated IgG (Sigma) or goat anti-rabbit conjugated IgG (Rockland), 

respectively. α-tubulin (1:4,000) was used as internal control. Immunoblots were 

visualized with the ECL detection kit (Millipore) and exposed to X-ray film. The 

intensity of observed bands was normalized to α-tubulin intensity. The analysis was 

performed using Kodak 1-D Image Analysis software version 3.6 (Eastman Kodak). 

Quantitative real-time PCR. qRT-PCR was used to confirm the exon array data 

which were analyzed by Partek software and Ingenuity Pathway Analysis database. 

RNA was isolated with TRIzol (Invitrogen) from AGS cells using the RNeasy Mini 

Kit (Qiagen) following the manufacturer's instructions. First-strand cDNA was 

synthesized with total mRNA by reverse transcription kit (Invitrogen). Primers 

(Supplementary Table 3) were designed using the DNAStar software (DNAStar) and 

PrimerBank (http://pga.mgh.harvard.edu/primerbank). Gene expression was 



measured with a Bio-Rad iQ5 real-time PCR detection system with an SYBR Green 

Supermix (Bio-Rad Laboratories) and normalized to GAPDH.  

Cell proliferation assay. AGS cells (1 × 104 cells/well) were loaded at each well of 

a 96-well microtiter E-plate. Microelectronic sensor arrays are at the bottom of each 

well to detect the cell index. After incubation for 24 hours, cells were transfected 

with expression vectors or siRNAs for 6 hours and kept to monitor for total 84 hours. 

The E-plate was plated in the Real-Time Cell Analyzer (RTCA) System and 

incubated in an incubator containing 37 oC, 5% CO2.. The level of cell proliferation 

is shown as cell index (CI) based on measured electrical impedance by 

xCELLigence system (Roche). 
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