51 research outputs found

    Assessing the suitability of copper thiocyanate as a hole-transport layer in inverted CsSnI3 perovskite photovoltaics

    Get PDF
    We report the fndings of a study into the suitability of copper (I) thiocyanate (CuSCN) as a hole-transport layer in inverted photovoltaic (PV) devices based on the black gamma phase (B-γ) of CsSnl3 perovskite. Remarkably, when B-γ-CsSnI3 perovskite is deposited from a dimethylformamide solution onto a 180–190nm thick CuSCN flm supported on an indium-tin oxide (ITO) electrode, the CuSCN layer is completely displaced leaving a perovskite layer with high uniformity and coverage of the underlying ITO electrode. This fnding is confrmed by detailed analysis of the thickness and composition of the film that remains after perovskite deposition, together with photovoltaic device studies. The results of this study show that, whilst CuSCN has proved to be an excellent hole-extraction layer for high performance lead-perovskite and organic photovoltaics, it is unsuitable as a hole-transport layer in inverted B-γCsSnI3 perovskite photovoltaics processed from solution

    Electronic Properties of Copper(I) Thiocyanate (CuSCN)

    Get PDF
    With the emerging applications of copper(I) thiocyanate (CuSCN) as a transparent and solution-processable hole-transporting semiconductor in numerous opto/electronic devices, fundamental studies that cast light on the charge transport physics are essential as they provide insights critical for further materials and devices performance advancement. The aim of this article is to provide a comprehensive and up-to-date report of the electronic properties of CuSCN with key emphasis on the structure–property relationship. The article is divided into four parts. In the first section, recent works on density functional theory calculations of the electronic band structure of hexagonal β-CuSCN are reviewed. Following this, various defects that may contribute to the conductivity of CuSCN are discussed, and newly predicted phases characterized by layered 2-dimensional-like structures are highlighted. Finally, a summary of recent studies on the band-tail states and hole transport mechanisms in solution-deposited, polycrystalline CuSCN layers is presented
    corecore