3,078 research outputs found

    A JWST/NIRCam Study of Key Contributors to Reionization: The Star-forming and Ionizing Properties of UV-faint z78z\sim7-8 Galaxies

    Full text link
    Spitzer/IRAC imaging has revealed that the brightest z78z\sim7-8 galaxies often exhibit young ages and strong nebular line emission, hinting at high ionizing efficiency among early galaxies. However, IRAC's limited sensitivity has long hindered efforts to study the fainter, more numerous population often thought largely responsible for reionization. Here we use CEERS JWST/NIRCam data to characterize 116 UV-faint (median MUV=19.5_{UV}=-19.5) z6.58z\sim6.5-8 galaxies. The SEDs are typically dominated by young (\sim10-50 Myr), low-mass (M108 MM_\ast\sim10^8\ M_\odot) stellar populations, and we find no need for extremely high stellar masses (1011M\sim10^{11} M_\odot). Considering previous studies of UV-bright (MUV22_{UV}\sim-22) z78z\sim7-8 galaxies, we find evidence for a strong (5-10×\times) increase in specific star formation rate toward lower luminosities (median sSFR=103 Gyr1^{-1} in CEERS). The larger sSFRs imply a more dominant contribution from OB stars in the relatively numerous UV-faint population, perhaps suggesting that these galaxies are very efficient ionizing agents (median ξion=1025.7\xi_{ion}=10^{25.7} erg1^{-1} Hz). In spite of their much larger sSFRs, we find no significant increase in [OIII]++Hβ\beta EWs towards fainter MUV_{UV} (median \approx780 A˚\mathring{A}). If confirmed, this may indicate that a substantial fraction of our CEERS galaxies possess extremely low metallicities (\lesssim3% ZZ_\odot) where [OIII] emission is suppressed. Alternatively, high ionizing photon escape fractions or bursty star formation histories can also weaken the nebular lines in a subset of our CEERS galaxies. While the majority of our objects are very blue (median β=2.0\beta=-2.0), we identify a significant tail of very dusty galaxies (β1\beta\sim-1) at \approx0.5LUVL_{UV}^\ast which may contribute significantly to the z78z\sim7-8 star formation rate density.Comment: Accepted in MNRAS. Updated to use the most recent NIRCam zeropoints. There are no significant changes to the conclusions relative to v

    Calibrating the Star Formation Rate at z=1 from Optical Data

    Full text link
    We present a star-formation rate calibration based on optical data that is consistent with average observed rates in both the red and blue galaxy populations at z~1. The motivation for this study is to calculate SFRs for DEEP2 Redshift Survey galaxies in the 0.7<z<1.4 redshift range, but our results are generally applicable to similar optically-selected galaxy samples without requiring UV or IR data. Using SFRs fit from UV/optical SEDs in the AEGIS survey, we explore the behavior of restframe B-band magnitude, observed [OII] luminosity, and restframe (U-B) color with SED-fit SFR for both red sequence and blue cloud galaxies. We find that a SFR calibration can be calculated for all z~1 DEEP2 galaxies using a simultaneous fit in M_B and restframe colors with residual errors that are within the SFR measurement error. The resulting SFR calibration produces fit residual errors of 0.3 dex RMS scatter for the full color-independent sample with minimal correlated residual error in L[OII] or stellar mass. We then compare the calibrated z~1 SFRs to two diagnostics that use L[OII] as a tracer in local galaxies and correct for dust extinction at intermediate redshifts through either galaxy B-band luminosity or stellar mass. We find that a L[OII] - M_B SFR calibration commonly used in the literature agrees well with our calculated SFRs after correcting for the average B-band luminosity evolution in L* galaxies. However, we find better agreement with a local L[OII]-based SFR calibration that includes stellar mass to correct for reddening effects, indicating that stellar mass is a better tracer of dust extinction for all galaxy types and less affected by systematic evolution than galaxy luminosity from z=1 to the current epoch.Comment: 16 pages, 15 figures, emulateapj format, to be submitted to Ap

    The XMM Cluster Survey: The Stellar Mass Assembly of Fossil Galaxies

    Get PDF
    This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightest galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5R200, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters. The online FS catalog can be found at http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.html.Comment: 30 pages, 50 figures. ApJ published version, online FS catalog added: http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.htm

    Evolution of the Most Massive Galaxies to z=0.6: I. A New Method for Physical Parameter Estimation

    Full text link
    We use principal component analysis (PCA) to estimate stellar masses, mean stellar ages, star formation histories (SFHs), dust extinctions and stellar velocity dispersions for ~290,000 galaxies with stellar masses greater than $10^{11}Msun and redshifts in the range 0.4<z<0.7 from the Baryon Oscillation Spectroscopic Survey (BOSS). We find the fraction of galaxies with active star formation first declines with increasing stellar mass, but then flattens above a stellar mass of 10^{11.5}Msun at z~0.6. This is in striking contrast to z~0.1, where the fraction of galaxies with active star formation declines monotonically with stellar mass. At stellar masses of 10^{12}Msun, therefore, the evolution in the fraction of star-forming galaxies from z~0.6 to the present-day reaches a factor of ~10. When we stack the spectra of the most massive, star-forming galaxies at z~0.6, we find that half of their [OIII] emission is produced by AGNs. The black holes in these galaxies are accreting on average at ~0.01 the Eddington rate. To obtain these results, we use the stellar population synthesis models of Bruzual & Charlot (2003) to generate a library of model spectra with a broad range of SFHs, metallicities, dust extinctions and stellar velocity dispersions. The PCA is run on this library to identify its principal components over the rest-frame wavelength range 3700-5500A. We demonstrate that linear combinations of these components can recover information equivalent to traditional spectral indices such as the 4000A break strength and HdA, with greatly improved S/N. This method is able to recover physical parameters such as stellar mass-to-light ratio, mean stellar age, velocity dispersion and dust extinction from the relatively low S/N BOSS spectra. We examine the sensitivity of our stellar mass estimates to the input parameters in our model library and the different stellar population synthesis models.Comment: 20 pages, 18 Figures, submitted to MNRA

    A critical look at the mass-metallicity-star formation rate relation in the local universe. I. An improved analysis framework and confounding systematics

    Get PDF
    It has been proposed that the mass-metallicity relation of galaxies exhibits a secondary dependence on star formation rate (SFR), and that the resulting M-Z-SFR relation may be redshift-invariant, i.e., "fundamental." However, conflicting results on the character of the SFR dependence, and whether it exists, have been reported. To gain insight into the origins of the conflicting results, we (a) devise a non-parametric, astrophysically motivated analysis framework based on the offset from the star-forming ("main") sequence at a given stellar mass (relative specific SFR), (b) apply this methodology and perform a comprehensive re-analysis of the local M-Z-SFR relation, based on SDSS, GALEX, and WISE data, and (c) study the impact of sample selection, and of using different metallicity and SFR indicators. We show that metallicity is anti-correlated with specific SFR regardless of the indicators used. We do not find that the relation is spurious due to correlations arising from biased metallicity measurements, or fiber aperture effects. We emphasize that the dependence is weak/absent for massive galaxies (logM>10.5\log M_*>10.5), and that the overall scatter in the M-Z-SFR relation does not greatly decrease from the M-Z relation. We find that the dependence is stronger for the highest SSFR galaxies above the star-forming sequence. This two-mode behavior can be described with a broken linear fit in 12+log(O/H) vs. log (SFR/M/M_*), at a given MM_*. Previous parameterizations used for comparative analysis with higher redshift samples that do not account for the more detailed behavior of the local M-Z-SFR relation may incorrectly lead to the conclusion that those samples follow a different relationship.Comment: ApJ. Several minor correction

    Astrometry and geodesy with radio interferometry: experiments, models, results

    Full text link
    Summarizes current status of radio interferometry at radio frequencies between Earth-based receivers, for astrometric and geodetic applications. Emphasizes theoretical models of VLBI observables that are required to extract results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the achievements of VLBI during the past two decades in reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys., Vol. 70, Oct. 199

    CLASSY III: The Properties of Starburst-Driven Warm Ionized Outflows

    Full text link
    We report the results of analyses of galactic outflows in a sample of 45 low-redshift starburst galaxies in the COS Legacy Archive Spectroscopic SurveY (CLASSY), augmented by five additional similar starbursts with COS data. The outflows are traced by blueshifted absorption-lines of metals spanning a wide range of ionization potential. The high quality and broad spectral coverage of CLASSY data enable us to disentangle the absorption due to the static ISM from that due to outflows. We further use different line multiplets and doublets to determine the covering fraction, column density, and ionization state as a function of velocity for each outflow. We measure the outflow's mean velocity and velocity width, and find that both correlate in a highly significant way with the star-formation rate, galaxy mass, and circular velocity over ranges of four orders-of-magnitude for the first two properties. We also estimate outflow rates of metals, mass, momentum, and kinetic energy. We find that, at most, only about 20% of silicon created and ejected by supernovae in the starburst is carried in the warm phase we observe. The outflows' mass-loading factor increases steeply and inversely with both circular and outflow velocity (log-log slope \sim -1.6), and reaches 10\sim 10 for dwarf galaxies. We find that the outflows typically carry about 10 to 100% of the momentum injected by massive stars and about 1 to 20% of the kinetic energy. We show that these results place interesting constraints on, and new insights into, models and simulations of galactic winds.Comment: 34 pages, 16 figures, 6 tables, submitted to Ap

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version

    Measuring food preference and reward: application and cross-cultural adaptation of the leeds food preference questionnaire in human experimental research

    Get PDF
    Decisions about what we eat play a central role in human appetite and energy balance. Measuring food reward and its underlying components of implicit motivation (wanting) and explicit sensory pleasure (liking) is therefore important in understanding which foods are preferred in a given context and at a given moment in time. Among the different methods used to measure food reward, the Leeds Food Preference Questionnaire (LFPQ) is a well-established tool that has been widely used in the scientific field for over 10 years. The original LFPQ measures explicit liking and implicit wanting for the same visual food stimuli varying along two nutritional dimensions: fat (high or low) and taste (sweet or savoury/non-sweet). With increasing use of the LFPQ (in original or adapted forms) across different cultural and scientific contexts, there is a need for a set of recommendations for effective execution as well as cultural and nutritional adaptations of the tool. This paper aims to describe the current status of the LFPQ for researchers new to the methodology, and to provide standards of good practice that can be adopted for its cultural adaptation and use in the laboratory or clinic. This paper details procedures for the creation and validation of appropriate food stimuli; implementation of the tool for sensitive measures of food reward; and interpretation of the main end-points of the LFPQ. Following these steps will facilitate comparisons of findings between studies and lead to a better understanding of the role of food reward in human eating behaviour

    CLASSY VIII: Exploring the Source of Ionization with UV ISM diagnostics in local High-zz Analogs

    Full text link
    In the current JWST era, rest-frame UV spectra play a crucial role in enhancing our understanding of the interstellar medium (ISM) and stellar properties of the first galaxies in the epoch of reionization (EoR, z>6z>6). Here, we compare well-known and reliable optical diagrams sensitive to the main ionization source (i.e., star formation, SF; active galactic nuclei, AGN; shocks) to UV counterparts proposed in the literature - the so-called ``UV-BPT diagrams'' - using the HST COS Legacy Archive Spectroscopic SurveY (CLASSY), the largest high-quality, high-resolution and broad-wavelength range atlas of far-UV spectra for 45 local star-forming galaxies. In particular, we explore where CLASSY UV line ratios are located in the different UV diagnostic plots, taking into account state-of-the-art photoionization and shock models and, for the first time, the measured ISM and stellar properties (e.g., gas-phase metallicity, ionization parameter, carbon abundance, stellar age). We find that the combination of C III] λλ\lambda\lambda1907,9 He II λ1640\lambda1640 and O III] λ\lambda1666 can be a powerful tool to separate between SF, shocks and AGN at sub-solar metallicities. We also confirm that alternative diagrams without O III] λ\lambda1666 still allow us to define a SF-locus with some caveats. Diagrams including C IV λλ\lambda\lambda1548,51 should be taken with caution given the complexity of this doublet profile. Finally, we present a discussion detailing the ISM conditions required to detect UV emission lines, visible only in low gas-phase metallicity (12+log(O/H) 8.3\lesssim8.3) and high ionization parameter (log(UU) 2.5\gtrsim-2.5) environments. Overall, CLASSY and our UV toolkit will be crucial in interpreting the spectra of the earliest galaxies that JWST is currently revealing.Comment: 31 pages, submitted to ApJ, comments welcom
    corecore