77 research outputs found
AMANDA : an autonomous self-powered miniaturized smart sensing embedded system
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper introduces an Autonomous Smart Sensing Card (ASSC), an embedded system that will be powered indoors and outdoors by harvested energy, have miniaturized dimensions and serve multi-sensorial IoT applications for smart living and working environments. It will consist of a combination of newly developed and optimized off-the-shelf or close-tocommercialization technologies such as PV harvesters, energy storage and power management units, MCUs and sensors, all packed with a form factor under 3mm in thickness. The system will introduce technical breakthroughs that will boost further miniaturization, a small footprint, ultra-low power consumption as well as short- and long-range communications
Co-Evaluation of Pattern Matching Algorithms on IoT Devices with Embedded GPUs
Pattern matching is an important building block for many security applications, including Network Intrusion Detection Systems (NIDS). As NIDS grow in functionality and complexity, the time overhead and energy consumption of pattern matching become a significant consideration that limits the deployability of such systems, especially on resource-constrained devices.\ua0On the other hand, the emergence of new computing platforms, such as embedded devices with integrated, general-purpose Graphics Processing Units (GPUs), brings new, interesting challenges and opportunities for algorithm design in this setting: how to make use of new architectural features and how to evaluate their effect on algorithm performance. Up to now, work that focuses on pattern matching for such platforms has been limited to specific algorithms in isolation.In this work, we present a systematic and comprehensive benchmark that allows us to co-evaluate both existing and new pattern matching algorithms on heterogeneous devices equipped with embedded GPUs, suitable for medium- to high-level IoT deployments. We evaluate the algorithms on such a heterogeneous device, in close connection with the architectural features of the platform and provide insights on how these features affect the algorithms\u27 behavior. We find that, in our target embedded platform, GPU-based pattern matching algorithms have competitive performance compared to the CPU and consume half as much energy as the CPU-based variants.\ua0Based on these insights, we also propose HYBRID, a new pattern matching approach that efficiently combines techniques from existing approaches and outperforms them by 1.4x, across a range of realistic and synthetic data sets. Our benchmark details the effect of various optimizations, thus providing a path forward to make existing security mechanisms such as NIDS deployable on IoT devices
Energy autonomous wireless sensing node working at 5 Lux from a 4 cm2 solar cell
Harvesting energy for IoT nodes in places that are permanently poorly lit is important, as many such places exist in buildings and other locations. The need for energy-autonomous devices working in such environments has so far received little attention. This work reports the design and test results of an energy-autonomous sensor node powered solely by solar cells. The system can cold-start and run in low light conditions (in this case 20 lux and below, using white LEDs as light sources). Four solar cells of 1 cm2 each are used, yielding a total active surface of 4 cm2. The system includes a capacitive sensor that acts as a touch detector, a crystal-accurate real-time clock (RTC), and a Cortex-M3-compatible microcontroller integrating a Bluetooth Low Energy radio (BLE) and the necessary stack for communication. A capacitor of 100 μF is used as energy storage. A low-power comparator monitors the level of the energy storage and powers up the system. The combination of the RTC and touch sensor enables the MCU load to be powered up periodically or using an asynchronous user touch activity. First tests have shown that the system can perform the basic work of cold-starting, sensing, and transmitting frames at +0 dBm, at illuminances as low as 5 lux. Harvesting starts earlier, meaning that the potential for full function below 5 lux is present. The system has also been tested with other light sources. The comparator is a test chip developed for energy harvesting. Other elements are off-the-shelf components. The use of commercially available devices, the reduced number of parts, and the absence of complex storage elements enable a small node to be built in the future, for use in constantly or intermittently poorly lit places
Heterogeneity, high performance computing, self-organization and the Cloud
This open access book addresses the most recent developments in cloud computing such as HPC in the Cloud, heterogeneous cloud, self-organising and self-management, and discusses the business implications of cloud computing adoption. Establishing the need for a new architecture for cloud computing, it discusses a novel cloud management and delivery architecture based on the principles of self-organisation and self-management. This focus shifts the deployment and optimisation effort from the consumer to the software stack running on the cloud infrastructure. It also outlines validation challenges and introduces a novel generalised extensible simulation framework to illustrate the effectiveness, performance and scalability of self-organising and self-managing delivery models on hyperscale cloud infrastructures. It concludes with a number of potential use cases for self-organising, self-managing clouds and the impact on those businesses
Performing track reconstruction at the ALICE TPC using a fast Hough Transform method
The Hough Transform algorithm is a popular image analysis method that is widely used to perform global pattern recognition in images through the identification of local patterns in a suitably chosen parameter space. The algorithm can also be used to perform track reconstruction, to estimate the trajectory of individual particles when passed through the active elements of a detector volume. This paper presents a fast reconstruction method for the Time Projection Chamber (TPC) of the ALICE experiment at LHC. The method, that combines a linear Hough Transform algorithm with a fast filling of the Hough Transform parameter space, is developed within AliceO, the new computing framework of ALICE for RUN3
String Matching on a Multicore GPU Using CUDA
Abstract—Graphics Processing Units (GPUs) have evolved over the past few years from dedicated graphics rendering de-vices to powerful parallel processors, outperforming traditional Central Processing Units (CPUs) in many areas of scientific computing. The use of GPUs as processing elements was very limited until recently, when the concept of General-Purpose computing on Graphics Processing Units (GPGPU) was intro-duced. GPGPU made possible to exploit the processing power and the memory bandwidth of the GPUs with the use of APIs that hide the GPU hardware from programmers. This paper presents experimental results on the parallel processing for some well known on-line string matching algorithms using one such GPU abstraction API, the Compute Unified Devic
- …