102 research outputs found

    Effects of Virtual Reality During Rowing Ergometry on Metabolic and Performance Parameters

    Get PDF
    Physical activity and moderate or intense exercise improve musculoskeletal and metabolic health; however, approximately 80% of Americans do not meet the minimum exercise recommendations from the American College of Sports Medicine (ACSM) or the Centers for Disease Control (CDC). Exercise intensity may be the most important factor in eliciting positive physical outcomes with exercise. PURPOSE: To assess the effectiveness of a proprietary virtual reality (VR) interface to increase metabolic and physical performance during rowing ergometry. METHODS: A novel VR software program for rowing ergometry was developed. Subsequently, sixteen apparently healthy, recreationally active individuals (12M, 4F; 35.5 ± 13.9 y; 174.5 ± 10.1 cm; 80.4 ± 12.8 kg; VO2max: 38.1 ± 5.6 mL/kg/min) were familiarized with the rowing ergometer and VR software, and then completed a VO2max test during two separate sessions. Finally, subjects performed four, 30-min rowing sessions in a randomized, counterbalanced order at maximal voluntary intensity in four different conditions: 1) no augmented visual or audio stimuli (CON), 2) no augmented visual stimuli with self-selected music (MUS), 3) screen-based environmental display (SB), and 4) a virtual reality environment (VR). Oxygen consumption, ventilation, heart rate, and the respiratory exchange ratio (RER) were measured continuously during the four experimental sessions; these data were then averaged over each 30-min testing period. Power output (W) and distance rowed (m) were measured and similarly reduced. Data (mean ± SD) were analyzed by repeated measures ANOVA and appropriate Tukey’s post hoc tests. Alpha was set at P \u3c 0.05. RESULTS: Oxygen consumption (CON: 2.23 ± 0.63 L/min; MUS: 2.30 ± 0.63 L/min; SB: 2.23 ± 0.71 L/min; VR: 2.19 ± 0.69 L/min), ventilation (CON: 74.2 ± 21.0 L/min; MUS: 77.5 ± 20.5 L/min; SB: 73.4 ± 23.9 L/min; VR: 71.7 ± 23.8 L/min), heart rate (CON: 154 ± 16 bpm; MUS: 156 ± 17 bpm; SB: 152 ± 23 bpm; VR: 154 ± 17 bpm), and RER (CON: 0.94 ± 0.04; MUS: 0.95 ± 0.04; SB: 0.94 ± 0.04; VR: 0.93 ± 0.05) were not different between conditions (all P \u3e 0.05). Performance outcomes also did not differ between conditions (CON: 126 ± 40 W, 6337 ± 763 m; MUS: 130 ± 42 W, 6486 ± 617 m; SB: 128 ± 46 W, 6358 ± 862 m; VR: 124 W ± 44 W, 6294 ± 849 m; all P \u3e 0.05). CONCLUSION: The pilot version of the VR software for rowing ergometry did not increase voluntary effort as determined by metabolic or physical performance outputs. Added features, such as greater immersion for reluctant exercisers, and competitive elements for highly motivated individuals, may elicit greater voluntary exertion with VR in rowing ergometry. Moreover, such applications may be more beneficial and improve exercise enjoyment in less experienced exercises who are not accustomed to high exercise intensities

    Effects of Virtual Reality During Rowing Ergometry on Presence, Perceived Exertion, and Exercise Enjoyment

    Get PDF
    Physical inactivity is associated with a host of negative health outcomes. Approximately 80% of Americans do not meet minimum levels of recommended physical activity. Virtual reality (VR) may improve exercise outcomes by enhancing presence, decreasing perceived exertion, and increasing exercise enjoyment. PURPOSE: To assess the effects of a proprietary VR interface on presence, perceived exertion, and exercise enjoyment during rowing ergometry. METHODS: First, we developed a novel VR software program for rowing ergometry. Subsequently, sixteen apparently healthy, recreationally active individuals (12M, 4F; 35.5 ± 13.9 y; 174.5 ± 10.1 cm; 80.4 ± 12.8 kg; VO2max: 38.1 ± 5.6 mL/kg/min) were familiarized with the rowing ergometer and VR software, and then completed a VO2max test during two separate sessions. Finally, subjects performed four, 30-min rowing sessions in a randomized, counterbalanced order at maximal voluntary intensity in four different conditions: 1) no augmented visual or audio stimuli (CON), 2) no augmented visual stimuli with self-selected music (MUS), 3) screen-based environmental display (SB), and 4) a virtual reality environment (VR). Presence (Spatial Presence Experience Scale), perceived exertion (Borg 6-20 scale), and enjoyment (Exercise-Induced Feelings Inventory) were assessed using questionnaires. Data (mean ± SD) were analyzed by repeated measures ANOVA and appropriate Tukey’s post hoc tests. Alpha was set at P \u3c 0.05. RESULTS: Eight of twenty spatial presence items indicated an enhanced experience in VR vs. SB (P \u3c 0.05). Perceived exertion (CON: 14.7 ± 2.1; MUS: 14.9 ± 2.0; SB: 15.2 ± 2.5; VR: 14.9 ± 1.7) and exercise-induced feelings were not different between conditions (P \u3e 0.05). CONCLUSION: The pilot version of the VR software for rowing ergometry did not reduce perceived exertion or increase exercise enjoyment in recreationally active individuals, although it did facilitate improved user presence compared to a screen-based enhanced environment. Added features, such as better coupling of rowing intensity to boat velocity in VR may further enhance presence and immersion, thereby decreasing perceived exertion and increasing exercise enjoyment

    Effects of Acute Bouts of Aerobic Exercise on Adipokines in Individuals with Mid-Spectrum Chronic Kidney Disease

    Get PDF
    Adipokines have been known to influence various health-related complications such as chronic kidney disease (CKD) and cardiovascular diseases. Fluctuations in adipokines are commonly seen from changes in body composition, however, some evidence shows acute changes may be seen from exercise. Individuals with CKD are commonly characterized by a decline in renal filtration and systemic inflammation. It may be possible that an acute bout of aerobic exercise may improve pro- and anti-inflammatory adipokine concentrations typically seen in individuals with moderate stages of CKD. PURPOSE: To determine the acute effects of aerobic exercise on adipokine concentrations in individuals with moderate stages of CKD. METHODS: Fourteen participants (8 females and 6 males, age = 58.7 ± 9.3 yrs., and %BF = 36.0 ± 9.6) were classified as having moderate stages of CKD (stages G3 and G4). Participants completed 30 min of steady-state moderate intensity exercise (SSE) at 65% VO2 reserve and high-intensity interval training (HIIE) at a 90% VO2 reserve separated by 2 min of slow walking (20% VO2 reserve) in a randomized, crossover design fashion. Venous blood samples were obtained at baseline, 1 h, and 24 h post-exercise. Data were analyzed using a repeated measures ANOVA (p \u3c 0.05) and a paired t-test. If any significant main or interaction effects were found, a post-hoc test was performed. RESULTS: There were no significant differences in adiponectin and leptin levels within treatments. However, significant differences were seen between baseline and 24 h omentin concentrations when performing HIIE (F(2,26) = 5.001, p = .015). Omentin rose significantly 24 h after an acute bout of HIIE (214.69 ± 83.28 to 252.04 ± 91.22, p = .034). A paired t-test showed no significant differences between SSE and HIIE for adiponectin and leptin. Although, there was a significant difference between 24 h omentin concentrations for SSE and HIIE (t = -2.327, p \u3c .037). Omentin concentrations were significantly higher when performing HIIE (252.04 ± 91.22) as opposed to SSE (218.70 ± 82.00, p \u3c .001). CONCLUSION: Omentin plays an anti-inflammatory role in chronic diseases. Thus, individuals experiencing systemic inflammation from moderate stages of CKD may see benefits after performing an acute bout of HIIE due to the up-regulated release of omentin 24 h post-exercise

    Reliability of Unilateral Isometric and Dynamic Leg Press Force and Power

    Get PDF
    Strength and power are critical components of athletic performance. Athletes commonly perform sport-specific movements off a single leg, but there are few reliable, easily administered unilateral leg force and power assessments. PURPOSE: To determine 1) the reliability of unilateral leg press maximal isometric force (MIF) and peak power tests and 2) the percentage of MIF that elicits unilateral peak power during a dynamic throw. We hypothesized that the tests would be reliable for the assessment of unilateral MIF and peak power and that unilateral peak power would be achieved at 50% of MIF. METHODS: Eighteen apparently healthy, recreationally active adults (17M: 1F; 27.4 ± 5.0 years; 1.78 ± 0.01 m; 93.5 ± 22.5 kg; 3159 ± 807 N bilateral MIF) completed three testing sessions. After a brief standardized warm-up, each subject performed three maximal unilateral isometric leg presses (MIF) with each leg at 90° of knee flexion on a modified leg press sled equipped with a force plate, linear encoder, and magnetic brake. Subsequently, the sled was unlocked and loaded in ascending fashion with 30%, 40%, 50%, 60%, and 70% of MIF; with an initial knee angle of 90°, subjects used maximal effort to throw each load twice, unilaterally, with each leg. Subjects rested and reset for 10-30 s between efforts. Data were sampled at 300 Hz, low pass filtered at 4 Hz, and peak instantaneous power (W) was calculated for each throw using the measured sled force and velocity. Intraclass correlation coefficients (ICC) were computed for the highest force and power repetition at each load across the three sessions. The ICC (95% CI) and peak power output were determined for both right and left legs. ICCs were considered excellent if ≥ 0.95, high if ≥ 0.90, good if ≥ 0.80, fair if ≥ 0.70, poor if ≤ 0.70, and very poor if ≤ 0.40. RESULTS: MIF showed good reliability between sessions [ICC: 0.85 (0.62, 0.94; left leg); 0.86 (0.58, 0.95; right leg)]. Unilateral peak power also showed good to high reliability between sessions across all loads: ICC (left leg) 30%: 0.91 (0.81, 0.96); 40%: 0.91 (0.81, 0.96); 50%: 0.95 (0.88, 0.98); 60%: 0.93 (0.86, 0.97); 70%: 0.81 (0.64, 0.92); (right leg) 30%: 0.95 (0.89, 0.98); 40%: 0.94 (0.87, 0.97); 50%: 0.92 (0.84, 0.97); 60%: 0.92 (0.84, 0.97); 70%: 0.90 (0.80, 0.96). Across all three sessions, peak power by the left leg was achieved at: 30% (11 of 18 participants); 40% (6 of 18); 50% (1 of 18). Peak power by the right leg was achieved at: 30% (13 of 18 participants); 40% (4 of 18); 50% (1 of 18). CONCLUSION: Unilateral leg press MIF and peak power can be reliably assessed with a modified leg press equipped with a force plate, linear encoder, and magnetic brake in a recreationally active population. Sport teams and coaches can use single leg isometric presses and throws as reliable methods to test their athletes’ unilateral force and peak power, respectively, with loads of 30-50% MIF appropriate for peak power measurement

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe
    corecore