31 research outputs found

    Rapid determination of LISA sensitivity to extreme mass ratio inspirals with machine learning

    Full text link
    Gravitational wave observations of the inspiral of stellar-mass compact objects into massive black holes (MBHs), extreme mass ratio inspirals (EMRIs), enable precision measurements of parameters such as the MBH mass and spin. The Laser Interferometer Space Antenna is expected to detect sufficient EMRIs to probe the underlying source population, testing theories of the formation and evolution of MBHs and their environments. Population studies are subject to selection effects that vary across the EMRI parameter space, which bias inference results if unaccounted for. This bias can be corrected, but evaluating the detectability of many EMRI signals is computationally expensive. We mitigate this cost by (i) constructing a rapid and accurate neural network interpolator capable of predicting the signal-to-noise ratio of an EMRI from its parameters, and (ii) further accelerating detectability estimation with a neural network that learns the selection function, leveraging our first neural network for data generation. The resulting framework rapidly estimates the selection function, enabling a full treatment of EMRI detectability in population inference analyses. We apply our method to an astrophysically motivated EMRI population model, demonstrating the potential selection biases and subsequently correcting for them. Accounting for selection effects, we predict that LISA will measure the MBH mass function slope to a precision of 8.8%, the CO mass function slope to a precision of 4.6%, the width of the MBH spin magnitude distribution to a precision of 10% and the event rate to a precision of 12% with EMRIs at redshifts below z=6.Comment: 12 pages, 4 figure

    Fast and Fourier: Extreme Mass Ratio Inspiral Waveforms in the Frequency Domain

    Full text link
    Extreme Mass Ratio Inspirals (EMRIs) are one of the key sources for future space-based gravitational wave interferometers. Measurements of EMRI gravitational waves are expected to determine the characteristics of their sources with sub-percent precision. However, their waveform generation is challenging due to the long duration of the signal and the high harmonic content. Here, we present the first ready-to-use Schwarzschild eccentric EMRI waveform implementation in the frequency domain for use with either graphics processing units (GPUs) or central processing units (CPUs). We present the overall waveform implementation and test the accuracy and performance of the frequency domain waveforms against the time domain implementation. On GPUs, the frequency domain waveform takes in median 0.0440.044 seconds to generate and is twice as fast to compute as its time domain counterpart when considering massive black hole masses 2×106M\geq 2 \times 10^6 \,{\rm M_\odot} and initial eccentricities e0>0.2e_0 > 0.2. On CPUs, the median waveform evaluation time is 55 seconds, and it is five times faster in the frequency domain than in the time domain. Using a sparser frequency array can further speed up the waveform generation, reaching up to 0.3 0.3 seconds. This enables us to perform, for the first time, EMRI parameter inference with fully relativistic waveforms on CPUs. Future EMRI models which encompass wider source characteristics (particularly black hole spin and generic orbit geometries) will require significantly more harmonics. Frequency-domain models will be essential analysis tools for these astrophysically realistic and important signals.Comment: 23 pages, 6 figure

    Satisfaction with care after total hip or knee replacement predicts self-perceived health status after surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inpatient satisfaction with care is a standard indicator of the quality of care delivered during hospitalization. Total hip and knee replacement (THR/TKR) for osteoarthritis (OA) are among the most successful orthopaedic interventions having a positive impact on health-related quality of life (HRQoL). The aim was to evaluate the effect of satisfaction shortly after hospital discharge on 1-month, 6-month and 1-year Medical Outcomes Study 36-item Short Form (SF-36) scores for OA patients after THR and TKR, controlling for patient characteristics, clinical presentation and preoperative SF-36 scores.</p> <p>Methods</p> <p>A multicenter prospective cohort study recruited 231 patients with OA scheduled to receive THR or TKR. Satisfaction was assessed by the Patients Judgment of Hospital Quality (PJHQ) questionnaire and HRQoL by the SF-36 questionnaire. Linear models for repeated measures assessed the relation between satisfaction (scores were dichotomized) and postoperative SF-36 scores.</p> <p>Results</p> <p>Of 231 participants, 189 were followed up 12 months after discharge (mean age 69 SD = 8; 42.6% male). The mean length of hospital stay was 13.5 (SD = 4) days. After adjustment for preoperative SF-36 scores, sociodemographic and clinical patient characteristics, satisfied patients (PJHQ score > 70) had higher SF-36 scores 1 year after surgery than did less-satisfied patients. Admission, medical care, and nursing and daily care scores mainly predicted bodily pain, mental health, social functioning, vitality and general health scores of the SF-36.</p> <p>Conclusion</p> <p>Besides being a quality-of-care indicator, immediate postoperative patient satisfaction with care may bring a new insight into clinical practice, as a predictor of self-perceived health status after surgery.</p

    Ebola virus epidemiology, transmission, and evolution during seven months in Sierra Leone

    Get PDF
    The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission

    Model-independent search for the presence of new physics in events including H → γγ with s \sqrt{s} = 13 TeV pp data recorded by the ATLAS detector at the LHC

    Get PDF
    Abstract A model-independent search for new physics leading to final states containing a Higgs boson, with a mass of 125.09 GeV, decaying to a pair of photons is performed with 139 fb−1 of s s \sqrt{s} = 13 TeV pp collision data recorded by the ATLAS detector at the Large Hadron Collider at CERN. This search examines 22 final states categorized by the objects that are produced in association with the Higgs boson. These objects include isolated electrons or muons, hadronically decaying τ-leptons, additional photons, missing transverse momentum, and hadronic jets, as well as jets that are tagged as containing a b-hadron. No significant excesses above Standard Model expectations are observed and limits on the production cross section at 95% confidence level are set. Detector efficiencies are reported for all 22 signal regions, which can be used to convert detector-level cross-section limits reported in this paper to particle-level cross-section constraints

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)

    The 16th Data Release of the Sloan Digital Sky Surveys : First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research
    corecore