188 research outputs found
Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects
A three year field study (2007-2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted at the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. The result demonstrated that there was no consistent effect of either organic or conventional soil management across the three years on the diversity or quantity of either diazotrophic or total bacterial communities. However, ordination analyses carried out on data from each individual year showed that factors associated with the different fertility management measures including availability of nitrogen species, organic carbon and pH, did exert significant effects on the structure of both diazotrophic and total bacterial communities. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. The diazotrophic community showed no significant change in diversity across the three years, however, the total bacterial community significantly increased in diversity year on year. Diversity was always greatest during March for both diazotrophic and total bacterial communities. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. Seasonal effects were less consistent in this quantitative study
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Contrasting effects of long term versus short-term nitrogen addition on photosynthesis and respiration in the Arctic
We examined the effects of short (<1–4 years) and long-term (22 years) nitrogen (N) and/or phosphorus (P) addition on the foliar CO2 exchange parameters of the Arctic species Betula nana and Eriophorum vaginatum in northern Alaska. Measured variables included: the carboxylation efficiency of Rubisco (Vcmax), electron transport capacity (Jmax), dark respiration (Rd), chlorophyll a and b content (Chl), and total foliar N (N). For both B. nana and E. vaginatum, foliar N increased by 20–50 % as a consequence of 1–22 years of fertilisation, respectively, and for B. nana foliar N increase was consistent throughout the whole canopy. However, despite this large increase in foliar N, no significant changes in Vcmax and Jmax were observed. In contrast, Rd was significantly higher (>25 %) in both species after 22 years of N addition, but not in the shorter-term treatments. Surprisingly, Chl only increased in both species the first year of fertilisation (i.e. the first season of nutrients applied), but not in the longer-term treatments. These results imply that: (1) under current (low) N availability, these Arctic species either already optimize their photosynthetic capacity per leaf area, or are limited by other nutrients; (2) observed increases in Arctic NEE and GPP with increased nutrient availability are caused by structural changes like increased leaf area index, rather than increased foliar photosynthetic capacity and (3) short-term effects (1–4 years) of nutrient addition cannot always be extrapolated to a larger time scale, which emphasizes the importance of long-term ecological experiments
Recommended from our members
Probabilistic downscaling of remote sensing data with applications for multi-scale biogeochemical flux modeling
Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes
Self-compassion and depressive symptoms in chronic pain (CP):A 1-year longitudinal study
Objectives: Self-compassion is associated with less depressive symptoms, better mental health outcomes, and less disability in chronic pain (CP). However, it remains longitudinally unexplored the role of self-compassion in CP. Also, although it acknowledged the conceptual overlapping between mindfulness and self-compassion, few studies have explored the role of self-compassion in CP while controlling for mindfulness in a longitudinal design.Methods: The current study conducts correlational and hierarchical linear regression analyses in a sample of 86 women with CP who completed an online battery of questionnaires that assess pain intensity, functional impairment, depressive symptoms, mindfulness, and self-compassion in three time points: baseline (T0), 6 months (T1), and 12 months (T2).Results: Results show that self-compassion (but not mindfulness) significantly predicts depressive symptoms at T1 and at T2 above and beyond depressive symptoms and functional impairment. Also, the interaction between functional impairment and self-compassion at T0 significantly predicts depressive symptoms at T1, but not at T2.Conclusions: These findings expand the current knowledge on the role of self-compassion in CP in showing that self-compassion is a significant predictor of later depressive symptoms in CP and suggesting its potential role in buffering the impact of functional impairment in future levels of depressive symptoms.</p
Evaluation of 309 Environmental Chemicals Using a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity Assay
The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use pesticides, from the ToxCast™ chemical library using a mouse ES cell platform. ES cells were cultured in the absence of pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (α,β myosin heavy chain; MYH6/MYH7) and cytotoxicity (DRAQ5™/Sapphire700™) were measured by In-Cell Western™ analysis. Half-maximal activity concentration (AC50) values for differentiation and cytotoxicity endpoints were determined, with 18% of the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays (∼500) revealed significant associations for a subset of chemicals (26) that perturbed transcription-based activities and impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2, PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A) were strongly associated with decreased ES cell differentiation as well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation
The Airway Microbiota in Cystic Fibrosis: A Complex Fungal and Bacterial Community—Implications for Therapeutic Management
International audienceBackground Given the polymicrobial nature of pulmonary infections in patients with cystic fibrosis (CF), it is essential to enhance our knowledge on the composition of the microbial community to improve patient management. In this study, we developed a pyrosequencing approach to extensively explore the diversity and dynamics of fungal and prokaryotic populations in CF lower airways. Methodology and Principal Findings Fungi and bacteria diversity in eight sputum samples collected from four adult CF patients was investigated using conventional microbiological culturing and high-throughput pyrosequencing approach targeting the ITS2 locus and the 16S rDNA gene. The unveiled microbial community structure was compared to the clinical profile of the CF patients. Pyrosequencing confirmed recently reported bacterial diversity and observed complex fungal communities, in which more than 60% of the species or genera were not detected by cultures. Strikingly, the diversity and species richness of fungal and bacterial communities was significantly lower in patients with decreased lung function and poor clinical status. Values of Chao1 richness estimator were statistically correlated with values of the Shwachman-Kulczycki score, body mass index, forced vital capacity, and forced expiratory volume in 1 s (p = 0.046, 0.047, 0.004, and 0.001, respectively for fungal Chao1 indices, and p = 0.010, 0.047, 0.002, and 0.0003, respectively for bacterial Chao1 values). Phylogenetic analysis showed high molecular diversities at the sub-species level for the main fungal and bacterial taxa identified in the present study. Anaerobes were isolated with Pseudomonas aeruginosa, which was more likely to be observed in association with Candida albicans than with Aspergillus fumigatus
Future and potential spending on health 2015-40: development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries
Background The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods We extracted GDP, government spending in 184 countries from 1980–2015, and health spend data from 1995–2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings We estimated that global spending on health will increase from US24·24 trillion (uncertainty interval [UI] 20·47–29·72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5·3% (UI 4·1–6·8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4·2% (3·8–4·9). High-income countries are expected to grow at 2·1% (UI 1·8–2·4) and low-income countries are expected to grow at 1·8% (1·0–2·8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 195 (157–258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157–258) per capita was available for health in 2040 in low-income countries. Interpretation Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential
Shedding Light on the Galaxy Luminosity Function
From as early as the 1930s, astronomers have tried to quantify the
statistical nature of the evolution and large-scale structure of galaxies by
studying their luminosity distribution as a function of redshift - known as the
galaxy luminosity function (LF). Accurately constructing the LF remains a
popular and yet tricky pursuit in modern observational cosmology where the
presence of observational selection effects due to e.g. detection thresholds in
apparent magnitude, colour, surface brightness or some combination thereof can
render any given galaxy survey incomplete and thus introduce bias into the LF.
Over the last seventy years there have been numerous sophisticated
statistical approaches devised to tackle these issues; all have advantages --
but not one is perfect. This review takes a broad historical look at the key
statistical tools that have been developed over this period, discussing their
relative merits and highlighting any significant extensions and modifications.
In addition, the more generalised methods that have emerged within the last few
years are examined. These methods propose a more rigorous statistical framework
within which to determine the LF compared to some of the more traditional
methods. I also look at how photometric redshift estimations are being
incorporated into the LF methodology as well as considering the construction of
bivariate LFs. Finally, I review the ongoing development of completeness
estimators which test some of the fundamental assumptions going into LF
estimators and can be powerful probes of any residual systematic effects
inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy &
Astrophysics Review. This version: bring in line with A&AR format
requirements, also minor typo corrections made, additional citations and
higher rez images adde
- …
