140 research outputs found

    Relationship of EMAST and Microsatellite Instability Among Patients with Rectal Cancer

    Get PDF
    Elevated microsatellite instability at selected tetranucleotide repeats (EMAST) is a genetic signature identified in 60% of sporadic colon cancers and may be linked with heterogeneous expression of the DNA mismatch repair (MMR) protein hMSH3. Unlike microsatellite instability-high (MSI-H) in which hypermethylation of hMLH1 occurs followed by multiple susceptible gene mutations, EMAST may be associated with inflammation and subsequent relaxation of MMR function with the biological consequences not known. We evaluated the prevalence of EMAST and MSI in a population-based cohort of rectal cancers, as EMAST has not been previously determined in rectal cancers. We analyzed 147 sporadic cases of rectal cancer using five tetranucleotide microsatellite markers and National-Cancer-Institute-recommended MSI (mononucleotide and dinucleotide) markers. EMAST and MSI determinations were made on analysis of DNA sequences of the polymerase chain reaction products and determined positive if at least two loci were found to have frame-shifted repeats upon comparison between normal and cancer samples from the same patient. We correlated EMAST data with race, gender, and tumor stage and examined the samples for lymphocyte infiltration. Among this cohort of patients with rectal cancer (mean age 62.2 ± 10.3 years, 36% female, 24% African American), 3/147 (2%) showed MSI (three males, two African American) and 49/147 (33%) demonstrated EMAST. Rectal tumors from African Americans were more likely to show EMAST than Caucasians (18/37, 49% vs. 27/104, 26%, p = 0.014) and were associated with advanced stage (18/29, 62% EMAST vs. 18/53, 37%, non-EMAST p = 0.02). There was no association between EMAST and gender. EMAST was more prevalent in rectal tumors that showed peri-tumoral infiltration compared to those without (30/49, 60% EMAST vs. 24/98, 25% non-EMAST, p = 0.0001). EMAST in rectal cancer is common and MSI is rare. EMAST is associated with African-American race and may be more commonly seen with metastatic disease. The etiology and consequences of EMAST are under investigation, but its association with immune cell infiltration suggests that inflammation may play a role for its development

    Arctic warming by abundant fine sea salt aerosols from blowing snow

    Get PDF
    The Arctic warms nearly four times faster than the global average, and aerosols play an increasingly important role in Arctic climate change. In the Arctic, sea salt is a major aerosol component in terms of mass concentration during winter and spring. However, the mechanisms of sea salt aerosol production remain unclear. Sea salt aerosols are typically thought to be relatively large in size but low in number concentration, implying that their influence on cloud condensation nuclei population and cloud properties is generally minor. Here we present observational evidence of abundant sea salt aerosol production from blowing snow in the central Arctic. Blowing snow was observed more than 20% of the time from November to April. The sublimation of blowing snow generates high concentrations of fine-mode sea salt aerosol (diameter below 300 nm), enhancing cloud condensation nuclei concentrations up to tenfold above background levels. Using a global chemical transport model, we estimate that from November to April north of 70° N, sea salt aerosol produced from blowing snow accounts for about 27.6% of the total particle number, and the sea salt aerosol increases the longwave emissivity of clouds, leading to a calculated surface warming of +2.30 W m−2 under cloudy sky conditions

    Energy loss due to defect formation from \u3csup\u3e206\u3c/sup\u3ePb recoils in SuperCDMS germanium detectors

    Get PDF
    The Super Cryogenic Dark Matter Search experiment (SuperCDMS) at the Soudan Underground Laboratory studied energy loss associated with Frenkel defect formation in germanium crystals at mK temperatures using in situ 210Pb sources. We examine the spectrum of 206Pb nuclear recoils near its expected 103 keV endpoint energy and determine an energy loss of (6.08±0.18) %, which we attribute to defect formation. From this result and using TRIM simulations, we extract the first experimentally determined average displacement threshold energy of (19.7+0.6−0.5) eV for germanium. This has implications for the analysis thresholds of future germanium-based dark matter searches

    Search for low-mass dark matter with CDMSlite using a profile likelihood fit

    Get PDF
    The Cryogenic Dark Matter Search low ionization threshold experiment (CDMSlite) searches for interactions between dark matter particles and germanium nuclei in cryogenic detectors. The experiment has achieved a low energy threshold with improved sensitivity to low-mass (/c2) dark matter particles. We present an analysis of the final CDMSlite data set, taken with a different detector than was used for the two previous CDMSlite data sets. This analysis includes a data salting method to protect against bias, improved noise discrimination, background modeling, and the use of profile likelihood methods to search for a dark matter signal in the presence of backgrounds. We achieve an energy threshold of 70 eV and significantly improve the sensitivity for dark matter particles with masses between 2.5 and 10 GeV/c2 compared to previous analyses. We set an upper limit on the dark matter-nucleon scattering cross section in germanium of 5.4×10−42 cm2 at 5 GeV/c2, a factor of ∼2.5 improvement over the previous CDMSlite result

    First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector

    Get PDF
    We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 gram CDMS HV device). These electron-recoil limits significantly improve experimental constraints on dark matter particles with masses as low as 1 MeV/c2. We demonstrate a sensitivity to dark photons competitive with other leading approaches but using substantially less exposure (0.49 gram days). These results demonstrate the scientific potential of phonon-mediated semiconductor detectors that are sensitive to single electronic excitations

    The transcriptional landscape of Shh medulloblastoma

    Get PDF
    © The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.info:eu-repo/semantics/publishedVersio

    Alignment of the CMS tracker with LHC and cosmic ray data

    Get PDF
    © CERN 2014 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore