329 research outputs found

    Implementing an eleven year through-train model to complete Primary and Secondary Education , is it possible? Why Not? : some challenges and principles

    Full text link
    As learning and teaching is moving away from imparting student with mere "knowledge", the simple one-size-fits-all solution of a prescribed years of schooling with some rigid and prescriptive subject syllabuses designated for different year-levels in primary and secondary schools will no longer meet the developmental needs of students. Logos Academy of Hong Kong has started an "Eleven-year Through-train Program in September 2002, to re-define the different key stages in primary, junior and senior secondary levels to provide a broad and balanced curriculum which maintains seamless continuity. The eleven-year program consists of three stages, each with its particular characteristics: Foundation Stage: (FS1- FS3); Developmental Stage: (DS1 - DS5) and Mastery Stage (MS1 - MS3). We have achieved some pleasing outcome so far and we believe that this re-definition of Key Learning Stages is forward looking and keeping abreast of global trends. If this "Eleven-year Through-Train Schooling System" model is proved to be successful, it will throw some light on a new schooling structure - which will have significant implications on the government's funding and planning policie

    Implementing an eleven year through-train model to complete Primary and Secondary Education: creating a platform for accommodating the newest pedagogical practices and technologies in school

    Full text link
    In educational transformation, Logos Academy of Hong Kong has started to create space in two aspects: to accommodate for new learning areas, and to use the most updated technologies for learning. In different Learning Stages, new learning areas like "Family Life Education", "Analytical study of Current Issues", Mind-mapping, MegaSkills and Media Education are introduced. The teachers will design different level- and age-appropriate activities and assignments that encourage the mastery of basic concepts and development of aesthetic appreciation, family life education, character formation, physique building and inquiry/research skills. Moreover, integrated tasks and projects intertwining with different study skills are mounted to enable the children to experiment creative designs and try out increasingly complex investigations. To facilitate learning and teaching, Logos Academy also creates new platforms to use the newest technologies for pre-lesson use, for lesson use, and for post-lesson use. It is reviewed that with the aid of some updated technologies, our teachers are committed to facilitate change, reflect on current practices, explore further improvements in new learning areas and to use the new technologies effectively - which will in turn enhance the effectiveness of integrated study skills, self-directed learning, team work and social interaction of the students

    Implementing an eleven year through-train model to complete Primary and Secondary Education: an innovative curriculum design, and optimizing the roles of subject specialists in the early learning stages

    Full text link
    In an eleven year "through-train" model, to construct a new road map for learning, Logos Academy of Hong Kong has delineated clearly the roles of "Homeroom Teachers" and "Subject Specialists". In the Foundation Stage (The first three years in Primary Schooling), the "Homeroom Teachers" will no longer teach most of the academic subjects for their respective Homeroom classes. They will undertake mainly pastoral care functions whilst different subject specialists are deployed to teach different subject areas accordingly. Each Subject teacher will teach ALL the classes within a year-band. In some Subjects like English Studies, two or three teachers will share the teaching load according to their specialties. After putting in practice for two years, evidence has shown that with this "Subject specialist across the year band" approach, the curriculum rigor has been strengthened and children have made much more remarkable progress in specific learning areas. Moreover, it has created space and opportunities for co-teaching and joint projects. This has in turn facilitated communication, collaboration and professional development of teachers in their subject specialty. Within the same subject area, the inter-teacher difference between classes of the same year level has been diminished, and the effectiveness of teaching and learning across the whole year-band may be better monitored and evaluated. The subject specialist is also in a better position to design and organize necessary follow-up actions (including enrichment or remedial work) more efficientl

    Revised timeline and distribution of the earliest diverged human maternal lineages in southern Africa

    Get PDF
    The oldest extant human maternal lineages include mitochondrial haplogroups L0d and L0k found in the southern African click-speaking forager peoples broadly classified as Khoesan. Profiling these early mitochondrial lineages allows for better understanding of modern human evolution. In this study, we profile 77 new early-diverged complete mitochondrial genomes and sub-classify another 105 L0d/L0k individuals from southern Africa. We use this data to refine basal phylogenetic divergence, coalescence times and Khoesan prehistory. Our results confirm L0d as the earliest diverged lineage (∼172 kya, 95%CI: 149-199 kya), followed by L0k (∼159 kya, 95%CI: 136-183 kya) and a new lineage we name L0g (∼94 kya, 95%CI: 72-116 kya). We identify two new L0d1 subclades we name L0d1d and L0d1c4/L0d1e, and estimate L0d2 and L0d1 divergence at ∼93 kya (95%CI:76-112 kya). We concur the earliest emerging L0d1’2 sublineage L0d1b (∼49 kya, 95%CI:37-58 kya) is widely distributed across southern Africa. Concomitantly, we find the most recent sublineage L0d2a (∼17 kya, 95%CI:10-27 kya) to be equally common. While we agree that lineages L0d1c and L0k1a are restricted to contemporary inland Khoesan populations, our observed predominance of L0d2a and L0d1a in non-Khoesan populations suggests a once independent coastal Khoesan prehistory. The distribution of early-diverged human maternal lineages within contemporary southern Africans suggests a rich history of human existence prior to any archaeological evidence of migration into the region. For the first time, we provide a genetic-based evidence for significant modern human evolution in southern Africa at the time of the Last Glacial Maximum at between ∼21-17 kya, coinciding with the emergence of major lineages L0d1a, L0d2b, L0d2d and L0d2a

    Spectrum of mitochondrial genomic variation and associated clinical presentation of prostate cancer in South African men

    Get PDF
    BACKGROUND : Prostate cancer incidence and mortality rates are significantly increased in African–American men, but limited studies have been performed within Sub–Saharan African populations. As mitochondria control energy metabolism and apoptosis we speculate that somatic mutations within mitochondrial genomes are candidate drivers of aggressive prostate carcinogenesis. METHODS : We used matched blood and prostate tissue samples from 87 South African men (77 with African ancestry) to perform deep sequencing of complete mitochondrial genomes. Clinical presentation was biased toward aggressive disease (Gleason score >7, 64%), and compared with men without prostate cancer either with or without benign prostatic hyperplasia. RESULTS : We identified 144 somatic mtDNA single nucleotide variants (SNVs), of which 80 were observed in 39 men presenting with aggressive disease. Both the number and frequency of somatic mtDNA SNVs were associated with higher pathological stage. CONCLUSIONS : Besides doubling the total number of somatic PCa-associated mitochondrial genome mutations identified to date, we associate mutational load with aggressive prostate cancer status in men of African ancestry.NIH R21- CA170081, Australian Prostate Cancer Research Centre NSW, the J. Craig Venter Institute, the Garvan Institute, the Petre Foundation, Australia, the Cancer Association of South Africa (CANSA).http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0045hb201

    Intra- and inter-individual genetic differences in gene expression

    Get PDF
    Genetic variation is known to influence the amount of mRNA produced by a gene. Given that the molecular machines control mRNA levels of multiple genes, we expect genetic variation in the components of these machines would influence multiple genes in a similar fashion. In this study we show that this assumption is correct by using correlation of mRNA levels measured independently in the brain, kidney or liver of multiple, genetically typed, mice strains to detect shared genetic influences. These correlating groups of genes (CGG) have collective properties that account for 40-90% of the variability of their constituent genes and in some cases, but not all, contain genes encoding functionally related proteins. Critically, we show that the genetic influences are essentially tissue specific and consequently the same genetic variations in the one animal may up-regulate a CGG in one tissue but down-regulate the same CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. The implication of this study is that this class of genetic variation can result in complex inter- and intra-individual and tissue differences and that this will create substantial challenges to the investigation of phenotypic outcomes, particularly in humans where multiple tissues are not readily available.

&#xa

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    Canfam GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus familiaris) using a combination of long reads, optical mapping, and Hi-C

    Get PDF
    Background: The German Shepherd Dog (GSD) is one of the most common breeds on earth and has been bred for its utility and intelligence. It is often first choice for police and military work, as well as protection, disability assistance, and search-and-rescue. Yet, GSDs are well known to be susceptible to a range of genetic diseases that can interfere with their training. Such diseases are of particular concern when they occur later in life, and fully trained animals are not able to continue their duties. Findings: Here, we provide the draft genome sequence of a healthy German Shepherd female as a reference for future disease and evolutionary studies. We generated this improved canid reference genome (CanFam GSD) utilizing a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. The GSD assembly is ∼80 times as contiguous as the current canid reference genome (20.9 vs 0.267 Mb contig N50), containing far fewer gaps (306 vs 23,876) and fewer scaffolds (429 vs 3,310) than the current canid reference genome CanFamv3.1. Two chromosomes (4 and 35) are assembled into single scaffolds with no gaps. BUSCO analyses of the genome assembly results show that 93.0% of the conserved single-copy genes are complete in the GSD assembly compared with 92.2% for CanFam v3.1. Homology-based gene annotation increases this value to ∼99%. Detailed examination of the evolutionarily important pancreatic amylase region reveals that there are most likely 7 copies of the gene, indicative of a duplication of 4 ancestral copies and the disruption of 1 copy. Conclusions: GSD genome assembly and annotation were produced with major improvement in completeness, continuity, and quality over the existing canid reference. This resource will enable further research related to canine diseases, the evolutionary relationships of canids, and other aspects of canid biology

    Mechanosensing is critical for axon growth in the developing brain.

    Get PDF
    During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell axons. In vivo atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo.This work was supported by the German National Academic Foundation (scholarship to D.E.K.), Wellcome Trust and Cambridge Trusts (scholarships to A.J.T.), Winston Churchill Foundation of the United States (scholarship to S.K.F.), Herchel Smith Foundation (Research Studentship to S.K.F.), CNPq 307333/2013-2 (L.d.F.C.), NAP-PRP-USP and FAPESP 11/50761-2 (L.d.F.C.), UK EPSRC BT grant (J.G.), Wellcome Trust WT085314 and the European Research Council 322817 grants (C.E.H.); an Alexander von Humboldt Foundation Feodor Lynen Fellowship (K.F.), UK BBSRC grant BB/M021394/1 (K.F.), the Human Frontier Science Program Young Investigator Grant RGY0074/2013 (K.F.), the UK Medical Research Council Career Development Award G1100312/1 (K.F.) and the Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of Health under Award Number R21HD080585 (K.F.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via https://doi.org/10.1038/nn.439

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    corecore