214 research outputs found

    Inherited crustal deformation along the East Gondwana margin revealed by seismic anisotropy tomography

    Get PDF
    Acknowledgments We thank Mallory Young for providing phase velocity measurements in mainland Australia and Tasmania. Robert Musgrave is thanked for making available his tilt-filtered magnetic intensity map. In the short term, data may be made available by contacting the authors (S.P. or N.R.). A new database of passive seismic data recorded in Australia is planned as part of a national geophysics data facility for easy access download. Details on the status of this database may be obtained from the authors (S.P., N.R., or A.M.R.). There are no restrictions on access for noncommercial use. Commercial users should seek written permission from the authors (S.P. or N.R.). Ross Cayley publishes with the permission of the Director of the Geological Survey of Victoria.Peer reviewedPublisher PD

    Rotation of an oblate satellite: Chaos control

    Get PDF
    Aims. This paper investigates the chaotic rotation of an oblate satellite in the context of chaos control. Methods. A model of planar oscillations, described with the Beletskii equation, was investigated. The Hamiltonian formalism was utilized to employ a control method for suppressing chaos. Results. An additive control term, which is an order of magnitude smaller than the potential, is constructed. This allows not only for significantly diminished diffusion of the trajectory in the phase space, but turns the purely chaotic motion into strictly periodic motion.Comment: 9 pages, 4 figures; accepted in A&

    The free precession and libration of Mercury

    Full text link
    An analysis based on the direct torque equations including tidal dissipation and a viscous core-mantle coupling is used to determine the damping time scales of O(10^5) years for free precession of the spin about the Cassini state and free libration in longitude for Mercury. The core-mantle coupling dominates the damping over the tides by one to two orders of magnitude for the plausible parameters chosen. The short damping times compared with the age of the solar system means we must find recent or on-going excitation mechanisms if such free motions are found by the current radar experiments or the future measurement by the MESSENGER and BepiColombo spacecraft that will orbit Mercury. We also show that the average precession rate is increased by about 30% over that obtained from the traditional precession constant because of a spin-orbit resonance induced contribution by the C_{22} term in the expansion of the gravitational field. The C_{22} contribution also causes the path of the spin during the precession to be slightly elliptical with a variation in the precession rate that is a maximum when the obliquity is a minimum. An observable free precession will compromise the determination of obliquity of the Cassini state and hence of C/MR^2 for Mercury, but a detected free libration will not compromise the determination of the forced libration amplitude and thus the verification of a liquid coreComment: 34 pages, 6 figures, AASTEX In press in Icaru

    Tracing the migration of mantle CO2 in gas fields and mineral water springs in south-east Australia using noble gas and stable isotopes

    Get PDF
    Geochemical monitoring of CO2 storage requires understanding of both innate and introduced fluids in the crust as well as the subsurface processes that can change the geochemical fingerprint of CO2 during injection, storage and any subsequent migration. Here, we analyse a natural analogue of CO2 storage, migration and leakage to the atmosphere, using noble gas and stable isotopes to constrain the effect of these processes on the geochemical fingerprint of the CO2. We present the most comprehensive evidence to date for mantle-sourced CO2 in south-east Australia, including well gas and CO2-rich mineral spring samples from the Otway Basin and Central Victorian Highlands (CVH). 3He/4He ratios in well gases and CO2 springs range from 1.21 to 3.07 RA and 1.23 – 3.65 RC/RA, respectively. We present chemical fractionation models to explain the observed range of 3He/4He ratios, He, Ne, Ar, Kr, Xe concentrations and δ13C(CO2) values in the springs and the well gases. The variability of 3He/4He in the well gases is controlled by the gas residence time in the reservoir and associated radiogenic 4He accumulation. 3He/4He in CO2 springs decrease 29 away from the main mantle fluid supply conduit. We identify one main pathway for CO2 supply to the surface in the CVH, located near a major fault zone. Solubility fractionation during phase separation is proposed to explain the range in noble gas concentrations and δ13C(CO2) values measured in the mineral spring samples. This process is also responsible for low 3He concentrations and associated high CO2/3He, which are commonly interpreted as evidence for mixing with crustal CO2. The elevated CO2/3He can be explained solely by solubility fractionation without the need to invoke other CO2 sources. The noble gases in the springs and well gases can be traced back to a single end-member which has suffered varying degrees of radiogenic helium accumulation and late stage degassing. This work shows that combined stable and noble gas isotopes in natural gases provide a robust tool for identifying the migration of injected CO2 to the shallow subsurface

    2018 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1005/thumbnail.jp

    The number of ways of grading examination candidates

    No full text
    corecore