

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Tracing the migration of mantle CO2 in gas fields and mineral water springs in south-east Australia using noble gas and stable isotopes

Citation for published version:

Karolyt, R, Johnson, G, Györe, D, Serno, S, Flude, S, Stuart, F, Chivas, AR, Boyce, A & Gilfillan, S 2019, 'Tracing the migration of mantle CO2 in gas fields and mineral water springs in south-east Australia using noble gas and stable isotopes', *Geochimica et Cosmochimica Acta*. https://doi.org/10.1016/j.gca.2019.06.002

Digital Object Identifier (DOI):

10.1016/j.gca.2019.06.002

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Geochimica et Cosmochimica Acta

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1 Tracing the migration of mantle CO₂ in gas fields and mineral water

2 springs in south-east Australia using noble gas and stable isotopes

- 3 Rūta Karolytė^{1a*}, Gareth Johnson¹, Domokos Györe², Sascha Serno¹, Stephanie Flude¹, Finlay M.
- 4 Stuart², Allan R. Chivas^{3,4}, Adrian Boyce² and Stuart M.V. Gilfillan¹
- ¹ School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE, UK
- 6 ²Isotope Geoscience Unit, Scottish Universities Environmental Research Centre (SUERC), East
- 7 Kilbride, G75 0QF, UK
- 8 ³GeoQuEST Research Centre, School of Earth, Atmospheric and Life Sciences, University of
- 9 Wollongong, Wollongong, NSW 2522, Australia
- 10 ⁴Department of Earth Sciences and Sprigg Geobiology Centre, The University of Adelaide SA 5005,
- 11 Australia
- ^aCurrent address: Department of Earth Sciences, University of Oxford, 3 S Parks Rd, Oxford OX1 3AN,
 UK
- 14 *Author for correspondence: <u>ruta.karolyte@earth.ox.ac.uk</u>
- 15 Keywords: Carbon Capture and Storage; geochemical tracing; noble gases; carbon isotopes; helium;
- 16 mantle; CO₂ springs; solubility fractionation; Otway Basin.

17 Abstract

- 18 Geochemical monitoring of CO₂ storage requires understanding of both innate and introduced fluids
- 19 in the crust as well as the subsurface processes that can change the geochemical fingerprint of CO₂
- 20 during injection, storage and any subsequent migration. Here, we analyse a natural analogue of CO₂
- 21 storage, migration and leakage to the atmosphere, using noble gas and stable isotopes to constrain
- 22 the effect of these processes on the geochemical fingerprint of the CO₂. We present the most
- 23 comprehensive evidence to date for mantle-sourced CO₂ in south-east Australia, including well gas
- 24 and CO₂-rich mineral spring samples from the Otway Basin and Central Victorian Highlands (CVH).
- 3 He/⁴He ratios in well gases and CO₂ springs range from 1.21 to 3.07 R_A and 1.23 3.65 R_C/R_A,
- 26 respectively. We present chemical fractionation models to explain the observed range of ³He/⁴He
- 27 ratios, He, Ne, Ar, Kr, Xe concentrations and $\delta^{13}C(CO_2)$ values in the springs and the well gases. The
- 28 variability of ³He/⁴He in the well gases is controlled by the gas residence time in the reservoir and

29 associated radiogenic ⁴He accumulation. ${}^{3}\text{He}/{}^{4}\text{He}$ in CO₂ springs decrease away from the main 30 mantle fluid supply conduit. We identify one main pathway for CO₂ supply to the surface in the CVH, 31 located near a major fault zone. Solubility fractionation during phase separation is proposed to 32 explain the range in noble gas concentrations and $\delta^{13}C(CO_2)$ values measured in the mineral spring 33 samples. This process is also responsible for low 3 He concentrations and associated high CO₂/ 3 He, 34 which are commonly interpreted as evidence for mixing with crustal CO_2 . The elevated $CO_2/^{3}$ He can 35 be explained solely by solubility fractionation without the need to invoke other CO₂ sources. The 36 noble gases in the springs and well gases can be traced back to a single end-member which has 37 suffered varying degrees of radiogenic helium accumulation and late stage degassing. This work 38 shows that combined stable and noble gas isotopes in natural gases provide a robust tool for 39 identifying the migration of injected CO₂ to the shallow subsurface.

40

41 **1.** Introduction

42 The development of geochemical tracing techniques to ascertain the origin and genetic link 43 between natural gases trapped in subsurface reservoirs and those degassing at the surface is 44 important to the safe and successful deployment of carbon capture and storage (CCS). Safe disposal 45 of captured industrial CO₂ requires verification of the fate of the injected gas and reassurance that 46 injected gas does not migrate to the surface (IPCC, 2005). To ensure this, CCS operators have to 47 adhere to legislative guidelines and verify that injected CO₂ is securely contained within the reservoir 48 formation (Dixon et al., 2015). While a variety of geophysical, geoelectric and thermal sensing 49 monitoring techniques exist (Giese et al., 2009), the high sensitivity of geochemical monitoring 50 techniques is useful for detecting seepage at low concentrations, verifying gas origin and tracing the 51 interactions between different crustal fluids (Myers et al., 2013; Stalker and Myers, 2014; Roberts et 52 al., 2017).

53 The noble gas isotopes have previously been applied in an engineered setting to assess CO₂ 54 migration, dissolution and residual trapping in reservoir pore spaces at the Cranfield CO₂-EOR site 55 field (Györe et al., 2015; Györe et al., 2017) and to study industrial underground natural gas storage 56 in the Paris Basin (Jeandel et al., 2010). Noble gas tracers have been used to refute allegations of 57 injected CO₂ leakage to the surface near the Weyburn-Midale CO₂ Monitoring and Storage Project 58 (Gilfillan et al., 2017) and to identify fugitive gas migration to shallow aquifers caused by industrial 59 hydraulic fracturing operations (Darrah et al., 2014). The techniques used in these industrial studies 60 have been informed by preceding research of natural gas fields and springs (e.g. Ballentine and

O'Nions, 1994; Gilfillan et al., 2014, 2009, 2008; Sherwood Lollar et al., 1997; Wilkinson et al., 2009).
Natural analogue studies remain a crucial gateway to developing geochemical tracing methods for
the industrial sector, providing information about fluid migration and retention processes occurring
over geological time scales (Baines and Worden, 2004; Haszeldine et al., 2005; Holland and Gilfillan,
2013).

66 Helium is an unrivalled indicator of crustal fluid migration in the subsurface because it is 67 sensitive to changes in the balance between volatiles derived from the mantle and the crust. This is 68 because the original helium composition of any subsurface fluid is not significantly modified by 69 interaction with groundwater due to the low abundance of helium in the atmosphere (Ozima and 70 Podosek, 2002). Hence, helium is particularly applicable to tracing gas migration through a water 71 system in both natural and industrial fugitive gas migration monitoring settings. Here we draw from 72 existing methodologies of helium use in tracing the migration of mantle fluids (Sano et al., 1990; 73 Sakamoto et al., 1992), mixing of different fluid sources (O'Nions and Oxburgh, 1988; Sano and 74 Marty, 1995) and dating natural gas and groundwater resources (Zhou and Ballentine, 2006; Liu et 75 al., 2016) to provide a comprehensive account on the geochemical link between natural CO₂ gases, 76 trapped in the subsurface and emanating in the shallow surface.

77 Noble gases are soluble in water and partition according to their relative solubilities during 78 gas-water equilibration. This property has been utilised mainly in assessing reservoir-scale water-gas 79 equilibration and gas migration or groundwater recharge conditions (Bosch and Mazor, 1988; 80 Ballentine et al., 1996; Barry et al., 2016) and the presence of 'excess air' above the atmospheric 81 solubility equilibrium (Aeschbach-Hertig et al., 2008; Kipfer et al., 2002). The former is largely based 82 on atmospheric noble gas ratios, whilst the latter combines ratios with elemental concentrations. 83 Atmospheric noble gas ratios in CO₂ springs are commonly similar to air saturated-water (ASW) and 84 the utility of these noble gases is commonly overlooked. We discuss the use of noble gas 85 concentration data in assessing the solubility fractionation effects of near-surface degassing and 86 reconstructing the original noble gas composition for the purpose of tracing.

The physical and chemical processes contributing to and modifying the noble gas contents of CO₂ are explored using the data from three natural CO₂ fields in the Otway Basin of SE Australia and ten natural CO₂-rich springs in Victoria. We focus on identifying the origin of the gases and the genetic link between gases stored in reservoir traps and those emanating at the surface from the natural mineral springs.

3

92 2 Geological setting

93

2.1 Basin setting and location of CO₂ gas fields and springs

The Otway Basin developed along the southern Australian margin as a result of crustal
extension due to sea floor spreading between Australia and Antarctica. The sedimentary section of
the basin comprises Upper Jurassic – Lower Cretaceous Otway Group sediments (Bernecker and
Moore, 2003). The present geometry of the basin is characterised by NW-SE trending normal faults,
and was established during Jurassic to Cretaceous rifting and subsequent reactivation during a shortlived period of basin inversion in the Miocene (Cox et al., 1995; Teasdale et al., 2003).

100 The basement comprises Lachlan and Delamerian fold belts, separated by the Moyston 101 lithospheric suture which extends to the Moho (Fig. 1a). Parallel N-S trending large-scale shear zones 102 and reverse faults connect to the Moyston Fault at depth (Fig. 1d) (Cayley et al., 2011). The structure 103 of the Otway Basin has been strongly controlled by the fabric of the underlying basement. Old 104 basement structures have a significant rheology contrast along them and are more likely to undergo 105 structural reactivation during a change in the stress regime (Hand and Sandiford, 1999). The Jurassic-106 Cretaceous extension was mainly accommodated along structural weaknesses of the basement, 107 which created graben and half-graben structures favourable for fluid trapping. Hydrocarbons and 108 CO₂ discoveries in the Otway Basin therefore tend to coincide with the location of deep basement 109 faults (Bernecker and Moore, 2003).

110 The basin contains numerous accumulations of CO₂, methane and other hydrocarbons in 111 varying concentrations (Boult et al., 2004). The three gas fields investigated in this work contain CO_2 112 concentrations above 75 mol %, with the remainder of the gas content being primarily methane. The 113 Caroline field is located in South Australia, near Mt Gambier and is a commercially explored CO₂ field 114 which has a CO₂ concentration in excess of 98 %. At reservoir depth and temperature (2.5 km, 92 $^{\circ}$ C), 115 CO₂ is in a supercritical fluid phase (Chivas et al., 1987). Boggy Creek and Buttress fields are located 116 in the Port Campbell Embayment at the eastern side of the Otway Basin. Both fields contain 117 mixtures of CO_2 and methane in the gas phase with no significant liquid hydrocarbon component 118 (Boreham et al., 2011). Methane generation is dated to mid-Paleogene (Duddy, 1997), followed by a 119 later-stage CO₂ emplacement (Boult et al., 2004; Watson et al., 2004; Lyon et al., 2005).

CO₂-rich mineral spring waters emanate at the ground surface within the extent and north of
 the basin. Over a hundred ambient temperature mineral springs are located in the Central Victorian
 Highlands (CVH) (Fig. 1b). Mineral water flows through a fracture-dominated aquifer consisting of
 Ordovician low-grade metasedimentary sequence and discharges into topographic lows such as

streambeds. Many of the springs also release CO₂ and can be identified as degassing CO₂ bubble
trails into creek beds or standing pools of water. Springs are clustered along the Muckleford Fault,
which is a deep Proterozoic reverse fault extending down to the lower crust and connecting to the
Moyston suture zone (Cayley et al., 2011) (Fig. 1d).

Mineral springs also emerge on the northern coast of Bellarine Peninsula, at Clifton Springs near Geelong, on the south-eastern edge of the Otway Basin (Fig. 1c). The central part of the Bellarine Peninsula has been uplifted in the late Miocene during the inversion of NE-SW trending normal faults (Coulson, 1933). The north coast of the peninsula is structurally controlled by the Curlewis Monocline, underlain by a south dipping normal fault. The Curlewis Monocline is parallel to the structural lineaments of the basement and could be associated with deeper basement faults (Dahlhaus, 2003). CO₂ springs emerge along the shoreline parallel to the fault.

135 The basement and the Otway Basin are overlain by the Newer Volcanic Province (NVP) 136 extrusives that stretch from the CVH to the northern edges of the Port Campbell Embayment. The 137 province is a well preserved intra-plate basaltic lava field with more than 400 eruptive centres 138 (Boyce, 2013), active between 5 Ma and 4.5 ka (Cas et al., 2017). The last eruption dated at 4.5 ka, 139 occurred at Mount Gambier, located near the Caroline CO₂ field (Robertson et al., 1996). Many of 140 the oldest eruptive centres are found in the eastern side of the province and near the CVH (4.6 - 2.6 141 Ma) (Price et al., 1997), but no systematic pattern of eruption ages exists (Cas et al., 2017). There is 142 no evidence for volcanic activity of this period in the Bellarine Peninsula where Clifton Springs are 143 located, although The Older Volcanics (39 - 49 Ma) crop out in the area (Price et al., 1997). The cause 144 of the recent volcanism is currently unresolved. Common theories include a mantle plume (Wellman 145 and McDougall, 1974; Wellman, 1983), edge-driven isolated mantle convection (King and Anderson, 146 1998), batch-melting caused by fault reactivation (Lesti et al., 2008), or a combination of all these 147 factors (Demidjuk et al., 2007; Davies and Rawlinson, 2014).

148 2.2 Previous noble gas studies of the gas fields and CO₂ springs

Despite the commercial exploration of CO₂ gas fields in the Otway Basin and springs in the CVH, studies of the CO₂ origins have been limited and the processes associated with the gas migration in the subsurface and to the surface are poorly understood. MORB and solar noble gas signatures have been identified in mantle xenolith samples from the Newer Volcanics (Matsumoto et al., 1997, 2002), primarily within CO₂-rich fluid inclusions (Matsumoto et al., 1998). Chivas et al. (1987) reported ³He/⁴He values of up to 3.1 R_A in the Caroline field and Caffee et al. (1999) identified the presence of primordial Xe in the field, providing evidence for a mantle source. Mantle helium has

- also been reported in the Lavers-1 gas field in the Otway Basin (1.68 R/R_A) (Watson et al., 2004).
- 157 Preliminary ${}^{3}\text{He}/{}^{4}\text{He}$ measurements of up to 3.1 R_A have been reported in CO₂ springs at the CVH
- 158 (Chivas et al., 1983) but no further study has been published. It has been suggested that the source
- 159 of mantle volatiles in CO₂ springs is associated with the NVP (Lawrence, 1969), however no
- 160 conclusive evidence currently exists other than geographic proximity to the eruptive centres. Prior to
- this work no geochemical study into the origin of the CO₂ degassing at the Bellarine Peninsula had
- 162 been published.

Basin: Port Campbell Embayment and Mt Gambier. Clifton Springs are located on the eastern edge of the basin. The CVH 166 CO₂ springs emerge from the Ordovician basement rocks in the CVH (Central Victorian Highlands). The Otway Basin and 167 CVH are dissected by N-S trending faults. The NVP (Newer Volcanic Province) extends across both areas. b) Location of 168 sampled CO₂ springs in CVH; many of the springs are located near the Muckleford Fault (see Table 1 for sample name 169 abbreviations). c) Clifton Springs are located on the coast of Bellarine Peninsula, along the crest of the Curlewis

Monocline. d) Sketch cross-section (not to scale) of A-A' transect on Fig. 1a, showing the structural relationship between
the basement and the basin. The Moyston and Mt Williams Faults extend to the Moho. Many of the basement faults
(including The Muckelford fault at CVH) are inferred to be connected to the Moyston Fault at depth. Elements of the
figure adapted from (Cartwright et al., 2002; Bernecker and Moore, 2003; Watson et al., 2003; Cayley et al., 2011; Cas et
al., 2017).

175 **2. Methods**

176 2.1 Gas sampling

177 The reported samples are in two distinct groups: 'well samples' refer to produced gases 178 collected from well heads. 'Spring samples' refer to sample collected at water pools and streams 179 where CO₂ is naturally degassing. Gas samples from the natural gas fields in the Otway Basin were 180 collected directly from producing well heads, using 9.5 mm diameter refrigeration grade copper 181 tubing connected to a pressure regulator by plastic hosing. Bubbling gases from the springs were 182 collected using an inverted plastic funnel placed over a bubbling vent, placed into the water column 183 to form an air-tight seal, allowing gas to flow through plastic hose to the copper tube. Tubes were 184 purged for 5 minutes and sealed using two steel clamps specifically manufactured for the purpose of 185 creating a helium leak-tight cold weld seal (Holland and Gilfillan, 2013). Mineral spring water 186 samples were collected via hand pumps, filtered through 0.45 µm pore-size filters and filled into 187 Nalgene bottles. The temperature, pH and TDS of the water in shallow tube bores was measured in 188 the field using a Hanna Instruments HI991300 Portable Waterproof temperature/pH/EC Meter with 189 an accuracy of \pm 0.5 °C, \pm 0.01 pH and \pm 1 μ S/cm for temperature, pH and electrical conductivity 190 respectively. TDS values were obtained from EC measurements using a conversion factor of 0.7 191 (Walton, 1989).

192 2.2 Laboratory procedures

193 All laboratory work was undertaken at the Scottish Universities Environmental Research 194 Centre (SUERC). Copper tube samples were connected to an all-metal vacuum line, purified using VG 195 Scienta ST22 titanium sublimation pump and ZrAI alloy getter. The isotopic composition of noble 196 gases was measured using a MAP 215-50 mass spectrometer using techniques outlined in Györe et 197 al. (2015). Bulk gas concentrations were measured using a Pfeiffer Vacuum QMS 200 quadrupole 198 mass spectrometer and Hewlett Packard 5890 Series 11 Gas Chromatograph with uncertainties of ±1 199 %. Major gas concentrations are reported corrected for air. $\delta^{13}(CO_2)$ values were determined using a VG Optima dual inlet isotope ratios mass spectrometer in dynamic mode using an internal standard 200 201 (Dunbar et al., 2016). Values are reported relative to VPDB standard with uncertainties of ±0.2 ‰.

202 **3. Results**

203 A total of three well gas and ten spring samples were measured. Sample location, bulk gas

204 composition, $\delta^{13}(CO_2)$ values, temperature, pH and TDS measurements are reported in Table 1. He,

205 Ne and Ar isotope ratios, and He, Ne, Ar, Kr, Xe concentrations are reported in Table 2. The full suite

206 of noble gases was measured in six of the CO₂ spring samples, while only He and Ne isotopes were

207 measured in three well gas and four CO₂ spring samples.

Table 1. Details of the geographic location, bulk gas composition, $\delta^{13}(CO_2)$ values of 3 well gases and 10 CO₂ springs; pH, temperature and TDS measured in water from 10 mineral water bores.

Comulo nomo		Location		Bulk	gas coi	npositi	on*			δ ¹³ C(CO ₂)	Water fr	Water from shallow bores		
Sample name	Label	Region	Latitude	Longitude	CO2	CH ₄	C ₂ H ₆	C₃H8	C_4H_{10}	N ₂	VPDB	рН	T °C	TDS g/L
Well gases											I			
Caroline-1	СА	Mount Gambier, SA	-37.9417	140.9083	99	0.9	0.01	-	-	0.4	-4.1	-	-	-
Boggy Creek-1	BC	Port Campbell, VIC	-38.5261	142.8245	87	10.0	0.1	0.03	0.01	2.3	-5.6	-	-	-
Buttress-1	BU	Port Campbell, VIC	-38.5167	142.8084	77	19.7	0.8	1.1	-	1.9	-7.6	-	-	-
CO ₂ springs														
Taradale	ТА	CVH	-37.1393	144.3500	>99						-9.4	6.1	20.9	2.9
Locarno	LO	CVH	-37.3113	144.1412	>99						-7.2	6.1	16.7	1.6
Deep Creek	DC	CVH	-37.3419	144.0733	>99						-8.2	5.6	15.7	0.6
Glenluce	GL	CVH	-37.1623	144.2225	>99	0.1					-7.8	6.3	16.7	2.2
Woolnoughs	wo	CVH	-37.2942	144.2065	>99						-6.9	6.2	21.1	1.6
Clifton Springs	CS	Bellarine Peninsula	-38.1510	144.5659	>99						-6.0	5.5	20.5	3.8
Sutton	SU	CVH	-37.3480	144.1317	>99						-8.4	6.0	19.7	1.1
Argyle	AR	CVH	-37.3141	144.1553	>99						-9.2	5.8	15.1	1.0
Kyneton	КҮ	CVH	-37.2358	144.4200	>99						-8.0ª	6.1	18.3	1.2
Tipperary	ті	CVH -37.3391 144.1186 >99							-7.1	6.3	16.5	2.2		

* Bulk gas composition for Caroline-1 from Chivas et al. (1987), Boggy Creek-1 from Akbari (1992)

a from Cartwright et al. (2002)

	³He/⁴He (R _C /R _A)		²⁰ Ne/ ²² Ne		²¹ Ne/ ²² Ne		⁴⁰ Ar∕ ³⁶ Ar		³⁸ Ar/ ³⁶ Ar		⁴ He x 10 ⁻⁶		²⁰ Ne x 10 ⁻⁹		⁴⁰ Ar x 10⁻⁵		⁸⁴ Kr x 10 ⁻⁹		¹³² Xe x 10 ⁻¹⁰	
Sample name																				
Well gases																				
Caroline-1	3.07	(0.12)	-		-		-		-		96.0	(5.0)	2.2	(0.1)	-		-		-	
Boggy Creek-1	1.21	(0.01)	-		-		-		-		384.4	(18.6)	124.1	(5.3)	-		-		-	
Buttress-1	1.25	(0.01)	-		-		-		-		478.8	(23.2)	15.4	(0.7)	-		-		-	
CO₂ springs																				
Taradale	1.23	(0.03)	9.73	(0.06)	0.030	(0.001)	314	(1)	0.195	(0.008)	4.0	(0.2)	34.3	(1.5)	5.3	(0.2)	8.2	(0.3)	6.9	(0.4)
Locarno	3.14	(0.09)	9.68	(0.05)	0.030	(0.001)	303	(1)	0.191	(0.003)	5.7	(0.2)	59.1	(2.5)	7.8	(0.3)	10.4	(0.43)	6.5	(0.3)
Deep Creek	2.45	(0.07)	9.92	(0.05)	0.029	(0.001)	301	(5)	0.190	(0.003)	8.9	(0.4)	132.3	(5.6)	22.8	(0.8)	39.5	(1.6)	30.4	(1.6)
Glenluce	1.57	(0.07)	9.71	(0.05)	0.028	(0.000)	308	(1)	0.189	(0.003)	163.0	(6.0)	1372	(58)	94.4	(3.5)	63.1	(2.6)	25.6	(1.3)
Woolnoughs	1.71	(0.07)	9.78	(0.06)	0.030	(0.001)	299	(1)	0.190	(0.003)	0.97	(0.04)	1781	(3.7)	86.0	(3.2)	79.9	(3.3)	36.1	(1.9)
Clifton Springs	1.97	(0.06)	9.73	(0.06)	0.029	(0.001)	323	(1)	0.191	(0.003)	42.0	(2.0)	128.8	(5.5)	22.9	(0.8)	29.8	(1.2)	19.9	(1.0)
Sutton	3.14	(0.03)	-		-		-		-		1.61	(0.05)	42.5	(1.5)	-		-		-	
Argyle	3.65	(0.08)	-		-		-		-		87.9	(2.6)	5502	(196)	-		-		-	
Kyneton	1.24*	(0.04)	-		-		-		-		4.9	(0.1)	13834	(493)	-		-		-	
Tipperary	2.70	(0.05)	-		-		-		-		0.48	(0.01)	438.3	(8.9)	-		-		-	

Table 2. Noble gas concentrations and isotopic ratios for 3 well gas samples and 10 CO₂ springs.

213 Concentrations are in cm³(STP)/cm³. Standard conditions are 0 °C at 1 bar.

Errors are 1σ standard deviation.

215 * ³He/⁴He reported uncorrected for atmospheric component due to air contamination

216 3.1. Bulk gas concentrations, $\delta^{13}(CO_2)$ and water measurements

217 The concentration of CO_2 in the Buttress field is 77 % with the remainder of gas predominately 218 constituting of CH₄ (19.7 %), N₂ (1.9 %) and traces of higher hydrocarbons (0.8 % C_2H_6 , 1.1 % C_3H_{10}). 219 Bulk gas compositions for the other two well gases are taken from the literature. CO₂ concentration 220 in the adjacent Boggy Creek field is slightly higher (87%) (Akbari, 1992). The Caroline field has the 221 highest CO₂ concentrations of 99 % with traces of CH₄, N₂ and C₂H₆ (Chivas et al., 1987). All mineral 222 spring gas samples were measured to be above 99 % CO₂ with the remainder of gas composed of 223 noble gases. Glenluce is the only spring showing trace amounts of CH₄ (0.1 %). The δ^{13} (CO₂) values of 224 the gas samples range from -9.4 to -6 ‰ in springs, and -7.6 to -4.1 ‰ in the well gases. The 225 temperature of the water samples varies from 15.1 – 20.9 °C, pH ranges from 5.6 to 6.3 in CVH 226 springs and 5.5 in Clifton Springs. Total dissolved solids (TDS) values range from 0.63 to 2.85 g/L.

3.2. Noble gas results

228 ³He/⁴He ratios are reported normalised to the value of air (where 1 R_A is the atmospheric ratio 229 of 1.4 x 10⁻⁶). ³He/⁴He R_c/R_A are corrected for ⁴He derived from the atmospheric component, using 230 the ⁴He/²⁰Ne value of the sample following the methodology in Craig (1978). It is assumed that all 231 20 Ne is derived from ASW and the 4 He/ 20 Ne value of ASW at 20 °C is 0.27 (Kipfer et al., 2002). 232 ⁴He/²⁰Ne ratios of the well gases are 4-5 orders of magnitude above the ASW value (3097-44656) 233 and range between 0.35 and 326 in the spring samples. ${}^{3}\text{He}/{}^{4}\text{He}$ R_c/R_A values differ significantly from 234 the measured ${}^{3}\text{He}/{}^{4}\text{He}$ ratios in spring samples with ${}^{4}\text{He}/{}^{20}\text{Ne}$ ratios <10 (Woolnoughs and 235 Tipperary). Kyneton is the only sample with significant atmospheric contamination (${}^{4}\text{He}/{}^{20}\text{Ne} = 0.35$) 236 which would make the correction erroneous (Sano et al., 2006) therefore its ³He/⁴He value is 237 reported uncorrected (1.24 R_A). The ³He/⁴He ratios of the remaining spring samples range from 1.23 238 to 3.65 Rc/R_A. ³He/⁴He ratios of well gases from the Port Campbell region are 1.21 and 1.25 R_A. The 239 sample collected from the Caroline CO₂ field in South Australia exhibits a higher value of 3.07 R_A, in 240 agreement with previous measurements (Chivas et al., 1987). All samples are compatible with two-241 component mixing in a ³He/⁴He vs ⁴He/²⁰Ne plot, where variable ³He/⁴He end-members mix with 242 ASW (Fig. 2).

243 $CO_2/^{3}$ He ratios of the well gases are within or below the Mid-Ocean Ridge Basalt (MORB) 244 range of 1 x 10⁹ to 1 x 10¹⁰ (Marty and Jambon, 1987). This is quite distinct from the higher $CO_2/^{3}$ He 245 values predicted for near ³He-free carbonates (O'Nions and Oxburgh, 1988; Sherwood Lollar et al., 246 1997). CO_2 concentrations in the spring samples are uniform, whilst $CO_2/^{3}$ He ratios vary over two 247 orders of magnitude, 2.26 x 10⁹ and 6.5 x 10¹¹, across the typical mantle and crustal values (Fig. 3).

Figure 2. ³He/⁴He R_A plotted against ⁴He/²⁰Ne ratios of springs and well gases. Solid lines depict binary mixing between ASW and the highest regional end-member (Argyle, 3.65 R_A), Caroline field and a crustal end-member (0.02 R/R_A). Black tick marks show percentage of helium from Caroline end-member in the mixture. Few springs fall close to the mixing line with the Caroline field, the remaining samples have variable amounts of crustal component. The errors are smaller than the symbols. Abbreviations of sample names are given in Table 1.

Figure 3. CO₂/³He ratios plotted against CO₂ concentrations for the well gases (yellow circles) and CO₂

257 springs (black circles). The shaded area shows the range of CO₂/³He values in the mantle (Marty and

258 Jambon, 1987) and crustal (O'Nions and Oxburgh, 1988) sourced volatiles. Well gas samples are within the

259 mantle range but with positive correlation between CO₂/³He ratios and CO₂ concentrations. CO₂

260 concentrations are uniform in the spring samples, however CO₂/³He ratios are wide-ranging across the

typical mantle and crustal values. Vertical errors are smaller than symbols. Abbreviations of sample namesare given in Table 1.

263 Neon, argon, krypton and xenon concentrations were measured in six CO_2 spring samples 264 (Taradale, Locarno, Deep Creek, Glenluce, Woolnoughs and Clifton Springs) (Table 2). ²⁰Ne/²²Ne 265 ratios of the spring samples range between 9.68 ± 0.05 and 9.92 ± 0.05 , close the air value of 9.8266 (Eberhardt et al., 1965). ⁴⁰Ar/³⁶Ar ratios range from 299 ± 1 to 323 ± 1, slightly above the value of air 267 (298.5) (Lee et al., 2006). In contrast to relatively uniform and air-like isotope ratios, noble gas 268 concentrations are highly variable. 20 Ne concentrations vary over three orders of magnitude (3.43 ± 0.15×10^{-8} to $1.4 \pm 0.1 \times 10^{-5}$); ⁴⁰Ar concentrations vary from $5.3 \pm 0.2 \times 10^{-5}$ to $9.44 \pm 0.43 \times 10^{-4}$. ⁸⁴Kr 269 and 132 Xe concentrations range from 8.2 ± 0.3 x 10⁻⁹ to 7.9 ± 3 x 10⁻⁸ and 6.5 ± 0.3 x 10⁻¹⁰ to 3.6 ± 0.2 270 271 x 10⁻⁹, respectively.

4. Discussion – link between the CO_2 source in the reservoirs and

273 springs

4.1. He-CO₂ abundance system

The trends in He-CO₂ abundance of well gases and CO₂ springs can be distinguished using a ternary diagram after Giggenbach et al. (1993). This allows depiction of the relative ratios between CO₂-³He-⁴He rather than absolute concentrations (Fig. 4). The MORB end-member (Marty and Jambon, 1987) is displayed for reference with a straight mixing line showing addition of radiogenic ⁴He. Caroline, Buttress, and Boggy Creek well gases as well as Argyle and Glenluce springs fall on a mixing line between MORB and crustal end-members. The rest of the springs lie on the mixing trajectory with low He/high CO₂ end-member (the CO₂ apex of the plot).

Based on the observed trends, two main processes can be identified. Addition of radiogenic
⁴He to the MORB-type component lowers the ³He/⁴He, decreases CO₂/⁴He and does not affect
CO₂/³He ratio (the trend towards the ⁴He apex of the graph). All CO₂ well gas and spring samples
exhibit variation in ³He/⁴He ratios due to radiogenic ⁴He addition. Subsequently, either helium loss or
CO₂ addition increases both CO₂/³He and CO₂/⁴He but does not affect the ³He/⁴He ratios. The second

process affects the majority of the springs (excluding Glenluce and Argyle) but none of the well gas
samples (trajectory towards the CO₂ apex of the plot).

To evaluate this two-step process in the following discussion, we select two samples to use as initial end-members. Argyle spring is representative of the regional high-mantle end member, least affected by radiogenic ⁴He addition (exhibiting the highest measured ³He/⁴He ratio 3.65 of R_c/R_A, [⁴He] = $8.8 \pm 0.3 \times 10^{-5}$ cm³(STP)/cm³). The highest He concentrations were measured in Glenluce sample (³He/⁴He 1.57 R_c/R_A, [⁴He]= $1.6 \pm 0.1 \times 10^{-4}$ cm³(STP)/cm³), which is the least affected by secondary He loss or CO₂ addition.

295 The ³He/⁴He ratio can be modified by dilution with non-CO₂ gas (usually methane) with a 296 different He isotopic signature (Sherwood Lollar et al., 1994), radiogenic ⁴He accumulation in situ 297 (Newell et al., 2015; Liu et al., 2016) or He stripping from formation water during gas migration 298 through lithological units enriched in ⁴He (Sano et al., 1990; Sakamoto et al., 1992). The resulting 299 ³He/⁴He ratio can then be overprinted by addition of CO₂ from a different source (O'Nions and 300 Oxburgh, 1988) or phase fractionation during degassing (Matthews et al., 1987). If the well gases 301 and CO_2 springs share a common source, then these processes can be accounted for and gas 302 composition can be traced back to a single initial end-member.

303

Figure 4. Ternary diagram (after Giggenbach et al., 1993) showing the relationship between the
concentrations of CO₂, ³He, ⁴He expressed as their ratios. MORB value used for reference is 8 ±1 R_A (Marty
and Jambon, 1987). The dashed lines show mixing between different components. The two clear trends are:
1) Radiogenic ⁴He addition, which shifts gas composition to the right apex of the ternary plot, 2) CO₂
addition or He loss trend towards the top apex of the plot. Port Campbell well gases fall on the mixing line
between MORB and crustal end-member. Spring samples fall on He loss/CO₂ addition trendline.
Abbreviations of sample names are given in Table 1.

311 4.2 Radiogenic ⁴He addition

⁴He is produced by the alpha decay of uranium and thorium in the crust. These elements are primarily concentrated in accessory minerals such as zircon and apatite, which release helium at a constant rate above the blocking temperature of the mineral (Tolstikhin et al., 2017). Similarly, ³He is produced by thermal neutron capture by ⁶Li, which can be approximated based on Li content of the crust (Ballentine and Burnard, 2002). However, this contribution is minimal relative to the amount of ³He released from mantle fluids and can be considered to be negligible in the context of in-situ
crustal helium accumulation.

After production, radiogenic helium is either trapped in the pore spaces in-situ or mobilised by any migrating water or gas phase present in the subsurface and then transported elsewhere. If a natural gas trap exists in-situ, helium will preferentially accumulate in the gas phase due to its low solubility in water.

323 4.2.1. Radiogenic ⁴He accumulation in-situ

324 The initial 3 He/ 4 He ratio of mantle-sourced gas can be reduced by direct accumulation of 4 He 325 produced in the crust, or by mixing with ⁴He-rich methane. The former would be applicable to CO₂ 326 springs, the latter to well gases containing CO₂ and CH₄ mixtures. In both cases, the final ⁴He 327 concentrations are controlled by the rate of ⁴He production in the crust. The contents of radiogenic 328 ⁴He accumulated in-situ in a natural gas trap can therefore be considered as a function of time since 329 the initial emplacement of the gas in the trap, given a known crustal helium production rate (Liu et 330 al., 2016). Under this assumption, we can estimate the residence time required for the observed 331 3 He/ 4 He ratios in both the well gases and the springs.

The ⁴He production rate (Craig and Lupton, 1976) and ⁴He concentration in the pore fluid increases at the rate of J_{He} (Torgersen, 1980):

334
$${}^{4}P = 0.2355 \times 10^{-12} \times [U] \times (1 + 0.123 \times [Th]/[U] - 4)$$
 (1)

335
$$J_{He} = {}^{4}P \times \rho \times (1 - \phi)/\phi)$$
 (2)

- Where:
- 337 [U], [Th] concentrations in ppm
- 338 ${}^{4}P$ crustal 4 He production rate in cm 3 STP/g yr
- 339 $J_{He} {}^{4}$ He production rate cm³ STP/yr
- 340 ρ density of the crust in g/cm³
- 341 ϕ porosity of the rocks as a fraction

342 Assuming ⁴He has been accumulating in mantle-sourced CO₂ with a known initial composition,

343 the final 3 He/ 4 He ratio is expressed as a function of time modified from Newell et al. (2015):

$$344 \quad {}^{3}He/{}^{4}He(t) = F \times {}^{3}He_{m}/(J_{He} \times t + \times {}^{4}He_{m})$$

- 345 Where:
- 346 *F* fraction of mantle-sourced gas in the reservoir

347 He_m – helium concentration of the mantle-source end-member

348 t - time in years

349 The final result is independent of the timing of CO₂ emplacement as it records the total ⁴He 350 accumulated since the start of the gas trap filling, so in the case of CO_2 /methane mixture, the 351 recorded age will be that of the methane emplacement. Argyle spring concentrations are taken as 352 representative of the initial mantle-sourced end-member, based on the highest measured ³He/⁴He 353 ratio (3.65 R_c/R_A). This ratio is significantly lower than SCLM or MORB values, but we assume this to 354 be representative of the end-member at the time of emplacement. Similar value is measured in the 355 Caroline field which has likely been emplaced at a similar time to Mount Gambier eruptions dated at 356 5 ka (Roberston et al., 1996), so we assume this to be a regional feature and that some radiogenic 357 ⁴He accumulation occurred within the melt before the gas emplacement.

358 Assuming an average reservoir porosity of 25 % (Watson et al., 2003), average crustal ²³⁸U and 359 ²³²Th concentrations of 2.8 and 10.7 mg/kg and average crustal density of 2.5 g/cm³ (Rudnick and 360 Fountain, 1995) the estimated age of filling of the of Boggy Creek field is 32 Ma (Fig 5). Assuming ± 5 % and ± 10 % uncertainty in porosity and ²³⁸U and ²³²Th concentrations respectively, the 361 362 accumulation age could vary between 22 and 45 Ma (showed in shaded area in Fig 5). The model 363 only considers ⁴He accumulated in-situ and does not account for other ⁴He sources in the total 364 budget which could include: the initial ⁴He contents in the gas phase acquired from the source rock, 365 helium stripped from water during the two stages of methane and CO₂ migration in the reservoir 366 and any external ⁴He flux, caused by heat release associated with regional tectonic events or 367 volcanism. The model also assumes all radiogenic ⁴He produced in the crust is released into the pore 368 water. Contribution from any of the outlined processes would act to decrease the modelled range, 369 so the calculated accumulation age range can therefore be taken as a maximum estimate.

Methane in Port Campbell traps is associated with the last hydrocarbon generation stage that commenced during the mid-Paleogene (Duddy, 1997; Boreham et al., 2004), which closely matches the range of accumulation ages calculated. The ³He/⁴He ratios observed within the Boggy Creek and Buttress fields can plausibly be explained by an Argyle-type end-member mixing with methane containing radiogenic ⁴He, confirming the binary mixing with methane trend depicted in Figure 4.

(3)

Figure 5. ³He/⁴He ratio vs time since gas emplacement calculated for the composition of the Boggy Creek-1
 sample. To achieve the current ³He/⁴He ratio measured in Boggy Creek (1.21 R_A), Argyle-type CO₂ (3.65 R_A)
 would have to mix with methane that has been emplaced at 32 Ma. Shaded area shows uncertainty.

The same calculation can be applied to the CO₂ springs. The ²³⁸U-²³²Th contents are assumed to be the same; the porosity of a fracture-dominated metasedimentary aquifer is estimated to be lower (10 ± 5 %). To reduce the initial ³He/⁴He ratios of 3.65 to the lowest measured value of 1.23 R_A, it would take 9 Ma years on average and between 4-15 Ma within the uncertainty of the parameters. To account for the range of observed ³He/⁴He ratios, this scenario requires emplacement of separate gas pockets for each individual spring at different times between 9 Ma and present and retention within the crust before the onset of the recent migration to the surface.

386 Multiple gas injection events could be associated with discrete episodes of seismic or volcanic 387 activity, although the latter is unlikely because the volcanic cones are far fewer than the individual 388 mineral springs (>100) (Shugg, 2009), and given the predominately monogenetic eruptive character 389 of the NVP extrusives (Boyce, 2013) volcanic activity is unlikely to produce so many different gas 390 pulses. Irrespective of the gas emplacement mechanism, the heavily folded and fractured Ordovician 391 metasedimentary sequence is unlikely to act as an effective gas trap for millions of years. In-situ ⁴He 392 accumulation in CO₂ springs is therefore an unlikely process to account for the observed variation in 393 ³He/⁴He ratios.

394 4.2.2. Radiogenic ⁴He stripping from enriched pore-water

An alternative model to in-situ generation is modification of magmatic ³He/⁴He ratios by
 dilution of mantle He by interaction with radiogenic helium-rich basement fluids during lateral

movement of the CO₂. Stagnant fluids in basement rocks with high U/Th concentrations are enriched
in radiogenic ⁴He well above ASW levels with ³He/⁴He ratios in the crustal range (0.02 R_A) (Bottomley
et al., 1984; Weinlich et al., 1999; Holland et al., 2013; Warr et al., 2018). Isolated stagnant pockets
of these fluids within the Cambrian – Ordovician basement sequence are a likely source of ⁴He for
the migrating mantle CO₂. In this case, the process is still governed by the helium production rate in
the crust (similar to the in-situ ⁴He accumulation discussed above), but the controlling factor is
distance migrated through the basement rather than time.

404 Samples with higher ³He/⁴He ratios are located geographically closer to each other and the 405 Muckleford fault zone. Under the assumption that one of these major fault zones could provide a 406 pathway for mantle CO₂ ascent to the surface, we can infer that the spring with the highest 407 measured 3 He/ 4 He ratio (Argyle, 3.65 R_A) would be the closest to the main conduit. Figure 6a shows 408 the relationship between the ³He/⁴He ratios and the radial distance of sample location to the Argyle 409 spring. Kyneton spring is excluded from this because of its contamination with an atmospheric 410 component. The observed 3 He/ 4 He ratios consistently decrease with increasing distance from the 411 inferred conduit, suggesting mantle CO₂ is being progressively diluted with a crustal component with 412 increasing distance migrated through the basement.

413 The mechanism of interaction with these fluids depends on whether CO₂ migrates in the gas phase 414 or dissolved in water. In case of the former, the governing factor is differences in solubility as helium 415 is strongly partitioned from the fluid to the migrating gas phase. If CO₂ migrates dissolved in water, 416 the mixing with the crustal fluids can be described by a mechanical dispersion model (Sano et al., 417 1990). Assuming that mantle fluids are supplied through a single conduit at a constant rate under 418 steady-state homogeneous and isotropic conditions under an equal hydrostatic pressure, ³He/⁴He is 419 calculated as a function of the radial distance to the conduit (r) following the approach detailed in 420 Sano et al. (1990) of deriving the location-specific helium dispersion constant (α) by fitting a least 421 squares function to the measured ${}^{3}\text{He}/{}^{4}\text{He}$ and radial distance data points.

422
$${}^{3}He/{}^{4}He(r) = ({}^{3}Pr^{2} + \alpha {}^{3}He_{m})/({}^{4}Pr^{2} + \alpha {}^{4}He_{m}))$$
 (4)

423 Where:

424 r – radial distance from the main gas conduit

425 α – helium dispersion constant, dependent on the pore network geometry

426 P – crustal helium production rate in atoms/cm³s, calculated under the same crustal density and U,

427 Th content assumptions as in the ⁴He accumulation model.

Similar decreases in ³He/⁴He ratios with increasing distance from a central volcanic cone has been
observed in various active volcanoes (Marty and Jambon, 1987; Williams et al., 1987; Sano et al.,
1990; Sakamoto et al., 1992). The calculated hydrodynamic dispersion coefficient (methods in Sano
et al., 1990) is 0.035 cm²/s, which compares well with the estimates in the original model (0.09 and
0.055 cm²/s).

The overall average rate of ³He/⁴He decrease in 4 volcanic locations reviewed by Sakamoto et al. (1992) varied between 0.3 to 0.5 R_A/km. The average rate of ³He/⁴He decrease in CVH is 0.1 R_A/km, potentially reflecting fluid migration via more efficient fracture networks and conduits in a faulted sequence relative to the previously investigated volcanic and volcanoclastic sequences. Fractured aquifers have lower tortuosity relative to porous ones, which results in shorter effective travel distance for the same total flow path distance (Clennell, 1997) and therefore lower rate of interaction with radiogenic basement fluids per distance travelled.

440 Springs with the highest 3 He/ 4 He ratios are clustered near the N-S trending Muckleford Fault 441 and a smaller parallel fault striking along Lake Daylesford (Fig 6b). Previous studies have shown that 442 clusters of NVP volcanic vents are commonly aligned parallel to nearby basement faults throughout 443 the province (van Otterloo et al., 2013; Cas et al., 2017). Mantle xenoliths were found in the vicinity 444 of the faults, suggesting fast mantle upwelling rates through the lithosphere were prevalent during 445 periods of magmatic activity (van Otterloo et al., 2014). While further work is required to provide 446 geomechanical and structural geological evidence for current fluid migration along the fault zones in 447 the CVH, the spatial distribution of ³He/⁴He ratios suggests that these basement lineaments 448 potentially play an important role in the currently active mantle-CO₂ ascent to the surface.

449

Figure 6 a). Plot of ³He/⁴He R_c/R_A values relative to the distance from the Argyle spring (highest ³He/⁴He ratio), inferred to be closest to the conduit. ³He/⁴He ratios decrease with increasing radial distance. The solid line is ³He/⁴He dispersion with distance model calculated based on Sano et al. (1990). b) Geographical distribution of CO₂ springs. Springs with the highest ³He/⁴He ratios are clustered close to N-S trending basement-scale Muckelford thrust fault and parallel smaller fault near Lake Daylesford. Shaded areas show ³He/⁴He ratio ranges which decrease with increasing distance from the Argyle spring. Kyneton spring is excluded due to atmospheric contamination. Abbreviations of sample names are given in Table 1.

457 4.3. Evaluating models to account for $CO_2/{}^{3}He$ and $\delta^{13}C(CO_2)$ variation

458 The combination of CO₂, helium and δ^{13} C(CO₂) values is commonly used to identify the 459 presence of mantle volatiles. This is because CO₂/³He ratios have been well constrained for mantle-460 derived melts, fluids and volatiles, with an average MORB value accepted as $1.5 \pm 0.5 \times 10^9$ (Sano and 461 Marty, 1995; Marty and Tolstikhin, 1998). ³He is not produced in significant amounts in the crust, so low 3 He / 4 He ratios and associated CO₂/ 3 He ratios between 10¹⁰ – 10¹⁵ are typically associated with a 462 463 crustal CO₂ source (O'Nions and Oxburgh, 1988). The CO₂/³He ratios observed in ten CO₂ samples 464 from the Victorian mineral springs vary over two orders of magnitude (2.8×10^9 to 6.5×10^{11}), 465 encompassing the range typical of mantle and crust end-members. A trend in increasing $CO_2/^{3}He$ 466 ratios is therefore commonly associated with admixture of crustal CO₂ and/or degassing in open 467 system (e.g. Crossey et al., 2009; Newell et al., 2015; Ruzié et al., 2013), defined by Rayleigh 468 fractionation. Here, we test both of these possibilities.

469 Crustal end-members can have a wide range of CO₂/³He ratios but a narrow range of ³He/⁴He 470 ratios $(0.01 - 0.07 R_A)$ (Ozima and Podosek, 2002). Figure 7 shows CO₂/³He values plotted against 471 3 He/ 4 He R_c/R_A ratios with binary mixing curves representing mantle (8 R_A) source and various crustal 472 components. Significantly, samples with high $CO_2/^{3}He$ ratios do not necessarily show lower ${}^{3}He/{}^{4}He$ 473 ratios, as would be expected in the case of mixing with ³He-poor crustal CO₂ source and trend 474 perpendicular to the calculated mixing lines. To explain the range of measured $CO_2/^{3}$ He ratios, 475 variable amounts of mixing with a wide range of different crustal reservoirs ($CO_2/^3He - 10^{10} - 10^{14}$) 476 would need to be invoked, which is unlikely in the setting where bedrock lithology is uniform across 477 the area.

478 Crustal CO₂ addition can be further assessed by combining He data with $\delta^{13}C(CO_2)$ values 479 (Sano and Marty, 1995). The range of $\delta^{13}C(CO_2)$ values measured in the springs (-9.4 to -6‰) partly 480 overlap the typical mantle range (-7 to -4‰) (Wycherley et al., 1999). However, increasing $CO_2/^3He$ 481 ratios do not consistently correlate with $\delta^{13}C(CO_2)$ change towards carbonate or organic end-482 members (Fig. 8). Instead, a vertical trend exists, which would require mixing with an end-member 483 with constant proportions of both organic and carbonate-sourced CO₂. To explain the highest 484 observed $CO_2/^3$ He ratios, 99 % of non-mantle (crustal/organic mixture) CO_2 addition is required. Such 485 significant amounts of crustal CO₂ sourced by dissolution of bedrock minerals would liberate cations 486 contained in the dissolving minerals and increase the TDS values of the water. Figure 9 shows that 487 there is no clear positive correlation between the $CO_2/^3He$ ratios in the volatiles and TDS values in 488 their associated waters. Alternatively, CO₂ and helium loss during open system degassing can be 489 evaluated using Rayleigh fractionation modelling. Figure 8 also shows a calculated open system

23

- 490 Rayleigh fractionation line, assuming average pH of 6.1 and 15 °C temperature. The calculated 491 fractionation factor between He/CO₂ is 0.012; the enrichment factor $ln10^{3}\alpha \, \delta^{13}C(CO_{2})_{aq}/(CO_{2})_{g}$ is 492 2.2‰. Open system degassing under measured conditions would result in a similar fractionation in 493 $CO_{2}/^{3}$ He ratio but a significantly more extensive than observed fractionation of $\delta^{13}C(CO_{2})$ values. We 494 therefore conclude that degassing under open system conditions is not supported by the data.
- 495 Previous geochemical modelling work showed that CO₂ does not cause significant amounts of 496 bedrock mineral dissolution in the Ordovician aquifer (Karolyte et al., 2017) and there is no 497 geological evidence for addition of large amounts of crustal CO₂ from other sources (e.g. carbonate 498 metamorphism). The possibility of significant amounts of organic CO₂ addition is also ruled out, 499 because the observed trend on Figure 8 cannot be explained by addition of organic CO_2 in the 500 absence of the crustal component. Based on the combined evidence from $\delta^{13}C(CO_2)$ -He, CO₂ 501 abundance and TDS contents of the mineral waters, we conclude that there is no significant crustal 502 CO₂ addition to the mantle volatiles sampled at the CVH and Clifton Springs. CO₂ loss during 503 degassing under open system conditions is also not supported by the data.

504

505 Figure 7. Binary mixing plot between MORB (red triangle) (³He/⁴He 8 R_A, CO₂/³He 1.5 x 10⁹) and various

506 crustal end-members ($CO_2/{}^{3}He \ 10^{10}-10^{14}$). The springs form a near-horizontal trendline and do not follow 507 any of the mixing lines, suggesting that mixing does not control the variation in $CO_2/{}^{3}He$ values. All error

508 bars are smaller than the printed symbols.

518

519 Figure 9. CO₂/³He vs TDS measured in water, sampled via hand pumps from tube bores. CO₂/³He values are 520 not correlated with TDS. A positive correlation would be expected if crustal CO₂ were added as a result of 521 bedrock mineral dissolution.

522 Alternatively to mixing with different CO₂ sources, the variability of δ^{13} C(CO₂) values (-9.4 to -523 6‰) can be explained by degassing in separate individual systems under a range of different pH and 524 temperature conditions. Equilibrium fractionation between $\delta^{13}C(CO_2)$ in aqueous and gaseous 525 phases is controlled by the temperature and the relative amounts of HCO₃- and H₂CO₃, which are pH-526 dependent. If H_2CO_3 is the dominant dissolved inorganic carbon (DIC) species, degassing CO_2 is slightly enriched in ¹³C. Conversely, when HCO₃⁻ dominates the system, degassing CO₂ is relatively 527 528 depleted in ¹³C (Deines et al., 1974). The pH values measured in mineral water bores range from 5.5 529 to 6.1 and temperatures are 15 – 21 °C. In this particular range of conditions, the ratio of HCO_3^{-1} to 530 H₂CO₃ in DIC varies significantly. The resulting calculated equilibrium enrichment factors between 531 DIC and gaseous CO₂ range from -3.4 to -0.43‰. Degassing under different DIC speciation conditions 532 therefore can fully account for the observed 3.4‰ variability in $\delta^{13}C(CO_2)$ values of the spring gases.

533 The trends observed in our data are not unique to this study. $CO_2/^{3}He$ ratios ranging between 10^9 to 10^{14} combined with $\delta^{13}C(CO_2)$ values without an obvious trend towards organic of carbonate 534 535 end-member is a common observation, commonly interpreted as a result of simple mantle and 536 crustal end-member mixing (Aka et al., 2001; Crossey et al., 2009; Mao et al., 2009). Other workers 537 recognised that simple mixing is not a conclusive interpretation (Italiano et al., 2014) and suggested 538 contribution of a solubility fractionation process (Matthews et al., 1987; Hilton, 2009; Newell et al., 539 2015). Where open system Rayleigh fractionation is proposed, it is commonly not conclusively 540 supported by evidence from δ^{13} C(CO₂) values (Ruzié et al., 2013; Bräuer et al., 2016). In the following section, we explore how this trend can alternatively be explained by fractionation during a two-stepprocess of dissolution and degassing.

543 4.4 Noble gas abundance modification by solubility in water

The variation observed in ³He concentrations in the mineral spring samples is also replicated in ⁴He and other noble gases. Figure 10 shows the distribution of noble gas concentrations in all studied springs. Importantly, the variance in observed gas concentrations decreases with element mass (Fig. 10), indicating a solubility-controlled process. If mantle CO₂ is transported to the surface in solution, this process can be modelled as dissolution and subsequent degassing.

Figure 10. Noble gas concentrations of CO₂ spring samples in cm³ (STP)/cm³. The variation in concentrations decreases with increasing molecular mass. Solid black line shows the concentrations measured in Glenluce spring, which has the highest helium concentrations and least fractionated CO₂/³He ratios.

549

554 During the equilibration between gas and water, noble gases are partitioned between the phases 555 according to their solubility coefficient, as defined by Henry's Law:

$$556 \qquad C_{iw} = \frac{C_{ig}}{K_i} \tag{5}$$

Where C is concentration, subscripts g and w denote gas and water phases and Ki is dimensionless
Henry's constant for noble gas i. Ki is temperature, pressure and salinity dependent (Kipfer et al.,

559 2002). The final concentrations in both phases depend on the volumetric gas/water ratio. The

560 equilibrium concentrations in the water (C_{iw}^{eq}) are expressed as (Zartman et al., 1961):

$$561 \qquad C_{iw}^{eq} = C_{it} \times F_w \tag{6}$$

562
$$F_w = \frac{C_{iw}V_w}{C_{iw}V_w + C_{ig}V_g}$$
 (7)

563 Where V is volume, C_{it} is the total noble gas budget, and F_w is the fraction of noble gases in the 564 water. Combining equations 5-7, C_{iw}^{eq} is:

565
$$C_{iw}^{eq} = C_t \times (1 + \frac{V_g}{V_w} K_i)^{-1}$$
 (8)

After the equilibration step, the water and the gas source separate and ascend to the surface
independently. The gases collected at the surface of stream beds are assumed to have been
transported in solution. During degassing at the surface, the noble gases are partitioned between
the phases again. The final measured gas concentrations are:

570
$$C_{ig}^{f} = C_{iw}^{eq} \times (1 + (\frac{V_g}{V_w})^{-1} \frac{1}{K_i})^{-1}$$
 (9)

For the purpose of investigating a shallow degassing process, equilibration with fresh water at
atmospheric pressure and 20 °C temperature is assumed. Henry's constants and activity coefficients
for water conditions were calculated from empirical equations from Crovetto et al. (1982) for Ne, Ar,
Kr and Xe and Smith (1985) for He, following the methodology in Ballentine and Burnard (2002).
Henry's constant for CO₂ is calculated using empirical equations from Crovetto (1991). Assuming the
density of fresh water (0.996 cm³/g) (Weast et al., 1988), concentrations in ASW are converted from
cm³STP/g_{H2O} to cm³STP/cm³ for Figure 11.

578 The highest helium concentrations and lowest $CO_2/^{3}He$ ratio were measured in the Glenluce spring. 579 We therefore assume that Glenluce is the least solubility fractionated end-member. For the purpose 580 of the model, we make a simplifying assumption that the Glenluce sample represents the total amount of CO₂ and noble gases from both the mantle and ASW sources (C_t). This end-member 581 equilibrates with a volume of water which, in theory, is noble gas free. When $\frac{V_g}{V_{...}} \rightarrow 0$, $F_W \rightarrow 1$, all 582 gases are dissolved in water. All gas contents are transferred into the water phase C_{iw}^{eq} and the ratios 583 are equal to the initial ones. When $\frac{V_g}{V_w} \rightarrow \infty$ and $F_w \rightarrow 0$, only a small fraction of noble gas contents 584 585 are dissolved in water. In this case, the ratios are the most fractionated and the concentrations in 586 water are low. After the equilibration, the water separates from the gas source, migrates to the surface and degasses. We make a simplifying assumption that the water degasses entirely, $\frac{V_g}{V} \rightarrow \infty$, 587 all dissolved gases are transferred into the gas phase and therefore the final measured $C_{ig}^f \rightarrow C_{iw}^{eq}$. 588

Figure 11 shows CO₂/He ratios, ³He concentrations relative to ⁴He, ²⁰Ne, ⁴⁰Ar, ⁸⁴Kr and ¹³²Xe and the 589 calculated solubility curves C_{ia}^{f} . The data points fall on the modelled line and is clearly 590 591 distinguishable from mixing with ASW, which is more enriched in all atmospheric noble gases. Air 592 and ASW components are potentially introduced by inclusion of small amounts of air and water into 593 the copper tube during sampling and are the most significant in Kyneton, Tipperary and Woolnoughs 594 samples. Tipperary and Woolnoughs springs include a combination of ASW and air components, 595 which is obvious in different element pair plots (Fig. 11 c,d,e,f) and less apparent in ³He vs ⁴He (Fig. 596 11b) because air and ASW have similar ³He/⁴He ratios. Figure 11b also clearly shows that the original 597 concentrations in Kyneton spring have been overprinted by admixture of air, most likely during 598 sample collection and clearly identified in the 4 He/ 20 Ne ratios. The ASW component is more evident 599 in the heavier atmospheric noble gases in the Deep Creek sample (Fig. 11, d, e, f).

600 With the exceptions discussed above, all other samples plot close to the modelled solubility 601 fractionation line. The maximum extent of fractionation between CO₂ and He is limited by the ratio of Henry's constants K_{CO2}/K_{He} (Fig. 11a). The calculated $\frac{V_g}{V_{ex}}$ ratios and progressive loss of noble gas 602 concentrations with decreasing F are consistent across all noble gas elemental pairs. When $\frac{V_g}{V_{...}}$ is 603 604 unity, 47% of the total CO₂ is dissolved but only 1% of helium. The resulting CO₂/ 3 He ratio is 1.4 x 605 10¹¹, which is the highest in the sample group, excluding the previously discussed samples which are 606 contaminated with air. This means that dissolution in water under equal gas/water ratios explains the maximum observed fractionation of CO₂/³He values. According to the model, the minimum $\frac{V_g}{v_{...}}$ 607 ratio required to dissolve the entire sample without fractionating the $CO_2/^3$ He is 0.0005, or 2000 608 609 times more water than gas.

610 611

Figure 11. CO₂/He ratios (a) and ³He concentrations relative to ⁴He (b), ²⁰Ne (c), ⁴⁰Ar (d), ⁸⁴Kr (e) and ¹³²Xe (f) 612 in cm³(STP)/cm³. The solid blue line shows the concentrations in the gas phase after a two-step dissolution

- 613 and degassing. First, water equilibrates with gas under different gas/water ratios. Second, the water of that 614 composition degasses entirely. Tick marks show gas/water ratios during the dissolution stage. Dashed lines 615 show mixing with ASW at 20 °C; dotted line shows mixing with air. Some deviations from the modelled line 616 occur due to mixing with ASW and/or air. a) The extent of CO₂/He fractionation during dissolution is limited 617 by K_{CO2}/K_{He} . All samples fall within this range except for TI and WO. c) shows that this is because TI and WO 618 have a contribution between ASW and air components, plotting between these end-members. This is 619 consistently replicated for Woolnoughs spring in c) d) and e). Ar, Kr and Xe concentrations of CS, DC, LO and 620 TA springs are within the limits of mixing with ASW and calculated model line. Abbreviations of sample 621 names are given in Table 1.
- 622

623 The model results are not a strict interpretation of the geological system, but rather an indication of 624 how the water controls the noble gas budget. The samples with high noble gas concentrations and 625 mantle $CO_2/^{3}He$ ratios might alternatively be interpreted to represent the residual gas cap migrating 626 the gas phase after the equilibration with water or having had minimal interaction with the water. 627 However, in cases where gas migrates dissolved in water and degasses at the surface, equilibration 628 in equal volumes of gas and water is needed to fractionate the $CO_2/^3He$ ratios by two orders of 629 magnitude. This is a significant consideration for the use of $CO_2/^3He$ ratios in interpretation of gas 630 provenance in gases equilibrating with water.

631 Figure 12 shows a theoretical fractionation model of mantle-derived CO₂ under the same ambient 632 atmospheric conditions as the previous model. A sample with the starting concentrations of $[CO_2]$ = 0.99 and $[^{3}He] = 1.2 \times 10^{-12} \text{ cm}^{3}\text{STP/cm}^{3}$ is dissolved in water under different gas/water ratios. The 633 634 figure shows how the decreasing fraction of moles relative to the starting value, transferred to the 635 water and gas phases during the two-stage process, translates to $CO_2/^3$ He ratios. When the 636 gas/water ratio is low during the dissolution step, all gasses are dissolved into the water phase and 637 the ratio is unchanged. As the gas/water ratio decreases, overall less gas is transferred into the 638 water phase, but the water becomes more enriched in CO_2 relative to helium. The second step 639 considers degassing after the equilibration, when the remaining non-dissolved gas is removed from the system and the water degasses under three scenarios ($\frac{V_g}{V_{ci}} \rightarrow 0$, 0.25 and 1). This effectively shows 640 641 that in a multi-step dissolution and degassing process, the $CO_2/^3$ He ratio is entirely dependent on the 642 gas/water ratios and the extent of fractionation is limited by the ratio of Henry's constants K_{CO2}/K_{He} . 643 In practice, the process is relevant to the point where the gas concentrations are above those in 644 ASW and the signal is not entirely diluted. Where CO_2 is the main carrier gas, this effect may not be 645 intuitively obvious, because the measured CO₂ concentrations are always > 99 % and the observed 646 variation is the ³He concentrations.

648Figure 12. Theoretical model of two step dissolution and degassing of mantle CO_2 and the effect on the649 $CO_2/^3$ He ratio. F is the fraction of moles in the modelled phase relative to the starting value. Symbols with650arrows indicate $\frac{V_g}{V_w}$ ratios approaching infinity and zero, black dots mark specific calculated ratios. The solid651black line shows the water phase during dissolution stage (step 1). The dashed lines show the resulting gas652phase after degassing of the water phase under three different scenarios ($\frac{V_g}{V_w}$ ->0, 0.25, 1) (step 2). The653maximum fractionation of $CO_2/^3$ He is limited by the relative ratio of K_{CO2}/K_{He} .

654

655 4.4.1. Summary

656 The geological interpretation of the proposed solubility fractionation model requires two stages of 657 phase separation - dissolution followed by degassing. Mantle CO₂ equilibrates with individual 658 aquifers under different gas/water ratios. Following this, CO₂-saturated water and the remaining gas 659 separate and ascend independently, driven by the differences in buoyancy force. Continuous 660 seepage of dry CO₂ (up to 6000 ppm) has been identified in the localised fractures of the Ordovician 661 sandstone outcropping near the Tipperary spring (Roberts et al., 2019), confirming the decoupled 662 CO₂ and water migration. Water migrates to the surface through individual conduits, forming 663 individual mineral water bodies and eventually springs. This model is consistent with the $\delta^{13}C(CO_2)$ 664 data, explained by degassing under measured temperature and pH conditions with each spring 665 acting as a separate system. This appears to be a plausible interpretation of the CVH mineral springs, 666 which show high variability in dissolved carbon and cation contents, indicating restricted individual 667 aquifers for separate springs (Cartwright et al., 2002; Weaver et al., 2006). Mineral water degasses 668 at the surface and all noble gases and CO_2 are assumed to be stripped from the water phase. The

669 final measured noble gas budgets are strongly controlled by the initial stage of equilibrating with670 water.

4.5 Model summary and application to CO₂ tracing

672 This case study of south-east Australian CO_2 gas reservoirs and natural springs provides a framework 673 for investigating genetic link between CO₂ stored in reservoirs and migrating into shallow aquifers. 674 Our findings suggest that the combined helium, CO_2 abundance and $\delta^{13}C(CO_2)$ system allows to 675 distinguish between key processes that modify the initial geochemical composition: admixture of 676 crustal or organic sourced CO₂, mixing with non-CO₂ crustal gases and fractionation between water 677 and gas phases in either open or closed system. Helium isotopic signature is a particular strength for 678 source identification in CO₂ spring samples because it can be corrected for atmospheric component. 679 In contrast, neon and argon isotope ratios are likely to be close to the values of air.

680 A useful way to think about the addition of radiogenic ⁴He by addition of non-CO₂ radiogenic

681 component is to model it as a function of either time or distance. The ⁴He dating approach

682 presented here allows constraint of the residence time needed to accumulate ⁴He and use this to

683 discriminate between alternative interpretations based on their feasibility in the geological context.

684 While a more comprehensive modelling technique might be needed if an accurate age is the

objective of the study (Zhou and Ballentine, 2006; Liu et al., 2016), this method confirmed in-situ ⁴He

686 accumulation as a viable process in the studied well gases but not in CO₂ springs. The spatial

687 distribution of ${}^{3}\text{He}/{}^{4}\text{He}$ ratios in the springs indicated that the distance from the main conduit is a

688 more important factor in CO₂ springs. This is controlled by the interaction with ⁴He-enriched

689 stagnant basement fluids and can be modelled as fluid dispersion or a solubility process, depending

690 if CO₂ is assumed to migrate dissolved in water or in a gas phase. In case of the former, our data are

in good agreement with similar observations in volcanic settings (Sano et al., 1990). The latter is alsoviable and would produce a similar pattern.

693 Radiogenic ⁴He can also be added by mixing with a crustal CO₂ source. In this case, decreasing

 3 He/⁴He ratios should correlate with an increase in CO₂/³He and either a negative or positive shift in

 $\delta^{13}C(CO_2)$ values, following a trajectory of mixing lines. Alternatively, it is possible that ⁴He addition is

696 decoupled from a secondary phase separation process controlling $\delta^{13}C(CO_2)$ values and $CO_2/^{3}He$

for ratios. In this case, no clear correlation between and $CO_2/^{3}He$ and $^{3}He/^{4}He$ is expected. If the system

698 is characterised by progressive gas loss in an open system, generally a significant progressive

699 enrichment of $\delta^{13}C(CO_2)$ values is expected in non-geothermal temperatures.

700 Alternatively, the sample suite may effectively represent a series of individual systems, where water 701 and gas equilibrate under different gas/water ratios. In this case, no particular trend is anticipated. 702 The variation of $\delta^{13}C(CO_2)$ values can instead be controlled by the phase separation at different pH 703 and temperature conditions. Temperature and pH readings of waters should always be taken to 704 account for this effect. All noble and major gas concentrations and their relative ratios, including 705 $CO_2/^3$ He are modified by dissolution in water and/or degassing, while elemental ratios are not 706 expected to change. This can be tested by modelling fractionation under different gas/water ratios, 707 which should be consistent across all element pairs. Importantly, we show how solubility models can 708 be tested by incorporating Ne, Ar, Kr and Xe concentration data, which are often not interpreted in 709 natural spring studies because of the air-like isotopic ratios. While $CO_2/^3He$ is expected to be easily 710 modified, 3 He/ 4 He ratio is not altered by phase partitioning and is a reliable indicator of gas 711 provenance.

712

713 5. Conclusions

³He/⁴He and CO₂/³He ratios in well gas and CO₂ spring samples in the Otway Basin and the
Central Victorian Highlands show unambiguous evidence for a predominantly mantle origin for the
CO₂ stored in the gas fields and actively migrating to the surface at the springs. The main processes
modifying noble gas geochemical signatures are crustal ⁴He addition and noble gas elemental
fractionation between the water and gas phases.

719 ³He/⁴He ratios in well gases vary due to mixing with methane, which has crustal helium 720 contents directly dependent on gas residence time in the reservoir. The ³He/⁴He ratio variation in 721 CO₂ springs is controlled by interaction with ⁴He-enriched basement pore fluids and is directly 722 dependent on the radial distance to the gas supply conduit. The observed decline in ³He/⁴He ratios 723 with distance suggests that CO₂ is supplied from a single conduit in the area around Argyle spring. 724 ³He/⁴He ratios are the highest in samples clustered near the Muckleford Fault and smaller parallel 725 faults in its vicinity, suggesting that one of these basement lineaments could be acting as a pathway 726 for mantle CO₂ to reach the shallow subsurface.

The variability of noble gas abundance patterns observed in the CO₂ springs can be explained by

solubility fractionation during equilibration with groundwater. If gas is dissolved in water,

transported and exsolved at the surface, a two-step dissolution and degassing process can be

730 considered. If gases ascend to the surface dissolved in water, original $CO_2/^3$ He ratios are unlikely to

be preserved. In CVH springs, $CO_2/{}^{3}$ He ratios in the range of $10^{11} - 10^{12}$ correlate with decreasing

concentrations of all noble gases and can be explained by variation of gas/water ratios during dissolution in water. Gas/water ratios up to 1 during the dissolution stage can explain the maximum observed fractionation in $CO_2/^3$ He ratios. The $\delta^{13}C(CO_2)$ values are controlled by dissolution and degassing at pH range of 5.8 - 6.3. This internally consistent model explains the abundance and isotopic signature in He, Ne, Ar, Kr, Xe and $\delta^{13}C(CO_2)$.

737Taking these processes into account, noble gas compositions observed in well gases in Port738Campbell, Mount Gambier, as well as CO_2 springs in CVH and Clifton Springs are traced back to a739single end member of ${}^{3}He/{}^{4}He$ of 3.07 - 3.65 R_A, proving a common source. This implies a uniform740regional gas composition in the Otway basin and CVH.

141 Importantly, we present evidence that ³He loss resulting in high CO₂/³He ratios, commonly associated with crustal CO₂ addition, can be explained without the need to invoke mixing with crustal CO₂, which is especially important in the absence of a clear mixing trend in $\delta^{13}C(CO_2)$ values. Hence, CO₂/³He values should be compared to the concentrations of other noble gases and used with caution when assessing the origin of CO₂ degassing at surface springs.

746 The techniques outlined in this paper can be used to identify the origin of CO₂ seeps at the 747 surface and their connectivity to reservoir gases. Hence, they can be applied to CO₂ sequestration or 748 other industrial fugitive gas monitoring settings, such as surrounding shale gas operations. Helium-749 CO₂ abundance relationship can be used to determine the gas connectivity as long as the industrial 750 gas has a different initial He isotope ratio to the ASW end-member. The genetic link between 751 separate CO₂ seeps can be tested by applying solubility fractionation modelling to account for 752 changes in noble gas concentrations caused by interaction with water. Noble gases are particularly 753 sensitive tracers to small-scale gas migration and should be considered for surface monitoring of any 754 industrial site where emission of fugitive gas is possible.

755 Acknowledgments

This work was supported by an EPSRC PhD studentship in partnership with CO2CRC and
Badley Geoscience Ltd. G. Johnson and S. Gilfillan were partially supported by both UKCCSRC and
Scottish Carbon Capture and Storage (SCCS), S. Serno was funded by the UK Carbon Capture and
Storage Research Centre (UKCCSRC) Call 2 grant. S. Flude was supported by by EPSRC grant
#EP/K036033/1. We thank the field operators – BOC, Air Liquide and CO2CRC for permission to
sample the gas reservoirs. Craig Vivian and Peter Dumsey are thanked for support while sampling in
the field. We thank Terry Donnelly and Marta Zurakowska at SUERC for assistance in obtaining stable

- 763 isotope and noble gas measurements of gas samples. Ian Cartwright is thanked for providing
- 764 background data on the Daylesford springs.

765

766 References

- Aeschbach-Hertig W., El-Gamal H., Wieser M. and Palcsu L. (2008) Modeling excess air and degassing
 in groundwater by equilibrium partitioning with a gas phase. *Water Resour. Res.* 44, 1–12.
- 769 Aka F. T., Kusakabe M., Nagao K. and Tanyileke G. (2001) Noble gas isotopic compositions and
- 770 water/gas chemistry of soda springs from the islands of Bioko, São Tomé and Annobon, along
- with Cameroon Volcanic Line, West Africa. *Appl. Geochemistry* **16**, 323–338.
- Akbari V. (1992) *Boggy Creek No.1 Well Completion Report.*, Available at: http://geoscience-web.s3 website-ap-southeast-2.amazonaws.com/well/boggycreek1.htm.
- Baines S. J. and Worden R. H. (2004) The long term fate of CO₂ in the subsurface: natural analogues
- for CO₂ storage. In *Geological Storage of Carbon Dioxide* (ed. R. H. Baines, S.J., Worden).
 Geological Society, London. pp. 59–85.
- Ballentine C. J. and Burnard P. G. (2002) Production, Release and Transport of Noble Gases in the
 Continental Crust. *Rev. Mineral. Geochemistry* 47, 481–538.
- Ballentine C. J. and O'Nions R. K. (1994) The use of natural He, Ne and Ar isotopes to study
 hydrocarbon-related fluid provenance, migration and mass balance in sedimentary basins. *Geol. Soc. London, Spec. Publ.* 78, 347–361.
- Ballentine C. J., O'Nions R. K. and Coleman M. L. (1996) A Magnus opus: Helium, neon, and argon
 isotopes in a North Sea oilfield. *Geochim. Cosmochim. Acta* 60, 831–848.
- Barry P. H., Lawson M., Meurer W. P., Warr O., Mabry J. C., Byrne D. J. and Ballentine C. J. (2016)
 Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field. *Geochim. Cosmochim. Acta* 194, 291–309.
- Bernecker T. and Moore D. H. H. (2003) Linking basement and basin fill: implications for hydrocarbon
 prospectivity in the Otway Basin Region. *APPEA J.* 43, 39–58.
- Boreham C. J., Hope J. M., Jackson P., Davenport R., Earl K. L., Edwards D. S., Logan G. A. and Krassay
 A. A. (2004) Gas oil source correlations in the Otway Basin, southern Australia. In Petroleum
 Exploration Society of Australia (PESA). pp. 19–22.
- Boreham C., Underschultz J., Stalker L., Kirste D., Freifeld B., Jenkins C. and Ennis-King J. (2011)
 Monitoring of CO₂ storage in a depleted natural gas reservoir: Gas geochemistry from the
 CO₂CRC Otway Project, Australia. *Int. J. Greenh. Gas Control* 5, 1039–1054.

Bosch A. and Mazor E. (1988) Natural gas association with water and oil as depicted by atmospheric
noble gases: case studies from the southeastern Mediterranean Coastal Plain. *Earth Planet. Sci. Lett.* 87, 338–346.

Bottomley D. ., Ross J. . and Clarke W. . (1984) Helium and neon isotope geochemistry of some
ground waters from the Canadian Precambrian Shield. *Geochim. Cosmochim. Acta* 48, 1973–
1985.

- Boult P. J., Johns D. R. and Lang S. C. (2004) Subsurface plumbing of the Crayfish Group in the Penola
 Trough: Otway Basin. In *Eastern Australasian Basins Symposium II* Petroleum Exploration
 Society of Australia (PESA). pp. 483–498.
- Boyce J. (2013) The Newer Volcanics Province of southeastern Australia: a new classification scheme
 and distribution map for eruption centres. *Aust. J. Earth Sci.* 60, 449–462.

Bräuer K., Geissler W. H., Kämpf H., Niedermannn S. and Rman N. (2016) Helium and carbon isotope
 signatures of gas exhalations in the westernmost part of the Pannonian Basin (SE Austria/NE
 Slovenia): Evidence for active lithospheric mantle degassing. *Chem. Geol.* 422, 60–70.

Caffee, M.W., Hudson, G.B., Velsko, C., Huss, G.R., Alexander, E.C. and Chivas A. R. (1999) Primordial
Noble Gases from Earth's Mantle: Identification of a Primitive Volatile Component. *Science*.
285, 2115–2118.

812 Cartwright I., Weaver T., Tweed S., Ahearne D., Cooper M., Czapnik K. and Tranter J. (2002) Stable

813 isotope geochemistry of cold CO₂-bearing mineral spring waters, Daylesford, Victoria, Australia:

Sources of gas and water and links with waning volcanism. *Chem. Geol.* **185**, 71–91.

815 Cas R. A. F., van Otterloo J., Blaikie T. N. and van den Hove J. (2017) The dynamics of a very large

816 intra-plate continental basaltic volcanic province, the Newer Volcanics Province, SE Australia,

and implications for other provinces. *Geol. Soc. London, Spec. Publ.* **446**, 123–172.

818 Cayley R. A., Korsch R. J., Moore D. H., Costelloe R. D., Nakamura A., Willman C. E., Rawling T. J.,

- 819 Morand V. J., Skladzien P. B. and O'Shea P. J. (2011) Crustal architecture of central Victoria:
- 820 Results from the 2006 deep crustal reflection seismic survey. *Aust. J. Earth Sci.* 58, 113–156.
- Chivas A. R., Barnes I. E., Lupton J. E. and Collerson K. (1983) Isotopic studies of south-east Australian
 CO₂ discharges. *Geol. Soc. Aust. Abstr.* 12, 94–95.
- Chivas A. R., Barnes I., Evans W. C., Lupton J. E. and Stone J. O. (1987) Liquid carbon dioxide of
 magmatic origin and its role in volcanic eruptions. *Nature* 326, 587–589.

- 825 Clennell M. Ben (1997) Tortuosity: a guide through the maze. *Geol. Soc. London, Spec. Publ.* 122,
 826 299–344.
- 827 Coulson A. (1933) The older volcanic and Tertiary marine beds at Curlewis, near Geelong. *Proc. R.*828 Soc. Victoria 45, 140–149.
- 829 Cox S. F., Sun S. S., Etheridge M. A., Wall V. J. and Potter T. F. (1995) Structural and geochemical
- controls on the development of turbidite- hosted gold quartz vein deposits, Wattle Gully mine,
 central Victoria, Australia. *Econ. Geol.* **90**, 1722–1746.
- 832 Craig H. (1978) A mantle helium component in circum-Pacific volcanic gases: Hakone, the Marianas
 833 and Mt. Lassen. *Terriestrial Rare Gases*, 3–16.
- 834 Craig H. and Lupton J. E. (1976) Primordial neon, helium, and hydrogen in oceanic basalts. *Earth*835 *Planet. Sci. Lett.* **31**, 369–385.
- Crossey L. J., Karlstrom K. E., Springer A. E., Newell D., Hilton D. R. and Fischer T. (2009) Degassing of
 mantle-derived CO₂ and He from springs in the southern Colorado Plateau region Neotectonic
 connections and implications for groundwater systems. *Bull. Geol. Soc. Am.* 121, 1034–1053.
- Crovetto R. (1991) Evaluation of solubility data of the system CO₂–H₂O from 273 K to the critical
 point of water. *J. Phys. Chem. Ref. Data* 20, 575–589.
- Crovetto R., Fernández-Prini R. and Japas M. L. (1982) Solubilities of inert gases and methane in H₂O
 and in D₂O in the temperature range of 300 to 600 K. *J. Chem. Phys.* **76**, 1077–1086.
- 843 Dahlhaus (2003) The Dell, Clifton Springs. 3-dimensional geological model., Available at:
- http://www.ccmaknowledgebase.vic.gov.au/soilhealth/soils_resource_details.php?resource_id
 =2416.
- Darrah T. H., Vengosh A., Jackson R. B., Warner N. R. and Poreda R. J. (2014) Noble gases identify the
 mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and
 Barnett Shales. *Proc. Natl. Acad. Sci.* 111, 14076–14081.
- Bavies D. R. and Rawlinson N. (2014) On the origin of recent intraplate volcanism in Australia. *Geology* 42, 1031–1034.
- Deines P., Langmuir D. and Harmon R. S. (1974) Stable carbon isotope ratios and the existence of a
 gas phase in the evolution of carbonate ground waters. *Geochim. Cosmochim. Acta* 38, 1147–
 1164.

- Demidjuk Z., Turner S., Sandiford M., George R., Foden J. and Etheridge M. (2007) U-series isotope
 and geodynamic constraints on mantle melting processes beneath the Newer Volcanic Province
 in South Australia. *Earth Planet. Sci. Lett.* 261, 517–533.
- Dixon T., McCoy S. T. and Havercroft I. (2015) Legal and regulatory developments on CCS. *Int. J. Greenh. Gas Control* 40, 431–448.
- Buddy I. R. (1997) Focussing exploration in the Otway Basin: understanding timing of source rock
 maturation. *APPEA J.* 37, 178–191.
- Dunbar E., Cook G. T., Naysmith P., Tripney B. G. and Xu S. (2016) AMS ¹⁴C dating at the Scottish
 Universities Environmental Research Centre (SUERC) radiocarbon dating laboratory.
 Radiocarbon 58, 9–23.
- 864 Eberhardt P., Eugster O. and Marti K. (1965) A redetermination of the isotopic composition of
 865 atmospheric neon. *Zeitschrift für Naturforsch. A* 20, 623–624.
- Giese R., Henninges J., Lüth S., Morozova D., Schmidt-Hattenberger C., Würdemann H., Zimmer M.,
 Cosma C. and Juhlin C. (2009) Monitoring at the CO₂ SINK site: A concept integrating
 geophysics, geochemistry and microbiology. *Energy Procedia* 1, 2251–2259.
- Giggenbach W. F., Sano Y. and Wakita H. (1993) Isotopic composition of helium, and CO₂ and CH₄
 contents in gases produced along the New Zealand part of a convergent plate boundary. *Geochim. Cosmochim. Acta* 57, 3427–3455.
- Gilfillan S., Haszedline S., Stuart F., Gyore D., Kilgallon R. and Wilkinson M. (2014) The application of
 noble gases and carbon stable isotopes in tracing the fate, migration and storage of CO₂. *Energy Procedia* 63, 4123–4133.
- Gilfillan S. M. V., Sherk G. W., Poreda R. J. and Haszeldine R. S. (2017) Using noble gas fingerprints at
 the Kerr Farm to assess CO₂ leakage allegations linked to the Weyburn-Midale CO₂ monitoring
 and storage project. *Int. J. Greenh. Gas Control* 63, 215–225.
- Gilfillan S. M. V, Ballentine C. J., Holland G., Blagburn D., Lollar B. S., Stevens S., Schoell M. and
 Cassidy M. (2008) The noble gas geochemistry of natural CO₂ gas reservoirs from the Colorado
 Plateau and Rocky Mountain provinces, USA. *Geochim. Cosmochim. Acta* 72, 1174–1198.
- Gilfillan S. M. V, Lollar B. S., Holland G., Blagburn D., Stevens S., Schoell M., Cassidy M., Ding Z., Zhou
 Z., Lacrampe-Couloume G. and Ballentine C. J. (2009) Solubility trapping in formation water as
 dominant CO(2) sink in natural gas fields. *Nature* 458, 614–618.

- Györe D., Gilfillan S. M. V. and Stuart F. M. (2017) Tracking the interaction between injected CO₂ and
 reservoir fluids using noble gas isotopes in an analogue of large-scale carbon capture and
 storage. *Appl. Geochemistry* **78**, 116–128.
- 6yöre D., Stuart F. M., Gilfillan S. M. V and Waldron S. (2015) Tracing injected CO₂ in the Cranfield
 enhanced oil recovery field (MS, USA) using He, Ne and Ar isotopes. *Int. J. Greenh. Gas Control*42, 554–561.
- Hand M. and Sandiford M. (1999) Intraplate deformation in central Australia, the link between
 subsidence and fault reactivation. *Tectonophysics* 305, 121–140.
- Haszeldine R. S., Quinn O., England G., Wilkinson M., Shipton Z. K., Evans J. P., Heath J., Crossey L.,
 Ballentine C. J. and Graham C. M. (2005) Natural geochemical analogues for carbon dioxide
 storage in deep geological porous reservoirs, a United Kingdom perspective. *Oil Gas Sci.*
- 895 *Technol.* **60**, 33–49.
- Hilton D. R. (2009) The helium and carbon isotope systematics of a continental geothermal system:
 results from monitoring studies at Long Valley caldera (California, U.S.A.). 127, 1–27.
- Holland G. and Gilfillan S. (2013) Application of noble gases to the viability of CO₂ storage. In *The Noble Gases as Geochemical Tracers,* Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 177–
 223.
- Holland G., Lollar B. S., Li L., Lacrampe-Couloume G., Slater G. F. and Ballentine C. J. (2013) Deep
 fracture fluids isolated in the crust since the Precambrian era. *Nature* 497, 357–360.
- 903 IPCC (2005) *IPCC Special Report on Carbon Dioxide Capture and Storage.*, UK: Cambridge University
 904 Press, New York. Available at: https://www.ipcc.ch/pdf/special-
- 905 reports/srccs/srccs_wholereport.pdf.
- Italiano F., Yuce G., Uysal I. T., Gasparon M. and Morelli G. (2014) Insights into mantle-type volatiles
 contribution from dissolved gases in artesian waters of the Great Artesian Basin, Australia.
 Chem. Geol. 378–379, 75–88.
- Jeandel E., Battani A. and Sarda P. (2010) Lessons learned from natural and industrial analogues for
 storage of carbon dioxide. *Int. J. Greenh. Gas Control* 4, 890–909.
- 911 Karolytė R., Serno S., Johnson G. and Gilfillan S. M. V. (2017) The influence of oxygen isotope
- 912 exchange between CO₂ and H₂O in natural CO₂-rich spring waters: Implications for
- geothermometry. *Appl. Geochemistry* **84**, 173–186.

- 914 King S. D. and Anderson D. L. (1998) Edge-driven convection. *Earth Planet. Sci. Lett.* **160**, 289–296.
- 915 Kipfer R., Aeschbach-Hertig W., Peeters F. and Stute M. 4 Noble Gases in Lakes and Ground Waters.
- 816 Kipfer R., Aeschbach-Hertig W., Peeters F. and Stute M. (2002) Noble Gases in Lakes and Ground
 917 Waters. *Rev. Mineral. Geochemistry* 47, 615–700.
- Lawrence C. R. (1969) Hydrogeology of the Daylesford Mineral District with special reference to the
 mineral springs. *Geol. Surv. Victoria, Undergr. water Investig. Rep.* 12.
- Lee J.-Y., Marti K., Severinghaus J. P., Kawamura K., Yoo H.-S., Lee J. B. and Kim J. S. (2006) A
 redetermination of the isotopic abundances of atmospheric Ar. *Geochim. Cosmochim. Acta* 70,
 4507–4512.
- Lesti C., Giordano G., Salvini F. and Cas R. (2008) Volcano tectonic setting of the intraplate, PlioceneHolocene, Newer Volcanic Province (southeast Australia): Role of crustal fracture zones. *J. Geophys. Res. Solid Earth* 113, 1–11.
- Liu W., Tao C., Borjigin T., Wang J., Yang H., Wang P., Luo H. and Zhai C. (2016) Formation time of gas
 reservoir constrained by the time-accumulation effect of 4He: Case study of the Puguang gas
 reservoir. *Chem. Geol.* 469, 246–251.
- Lyon P. J., Boult P. J., Watson M. N. and Hillis R. (2005) A systematic fault seal evaluation of the
 Ladbroke Grove and Pyrus traps of the Penold Trough, Otway Basin. *Aust. Pet. Prod. Explor. Assoc. J.* 45, 459–476.
- Mao X., Wang Y., Chudaev O. V. and Wang X. (2009) Geochemical evidence of gas sources of CO₂-rich
 cold springs from Wudalianchi, Northeast China. *J. Earth Sci.* 20, 959–970.
- Marty B. and Jambon A. (1987) C³He in volatile fluxes from the solid Earth: implications for carbon
 geodynamics. *Earth Planet. Sci. Lett.* 83, 16–26.
- Marty B. and Tolstikhin I. N. (1998) CO₂ fluxes from mid-ocean ridges, arcs and plumes. *Chem. Geol.*145, 233–248.
- Matsumoto T., Honda M., Mcdougall I. and O'reilly S. Y. (1998) Noble gases in anhydrous lherzolites
 from the Newer Volcanics, southeastern Australia: A MORB-like reservoir in the subcontinental
 mantle.
- Matsumoto T., Honda M., McDougall I., Yatsevich I. and O'reilly S. Y. (1997) Plume-like neon in a
 metasomatic apatite from the Australian lithospheric mantle. Nature 388, 162.

- Matsumoto T., Pinti D. L., Matsuda J. and Umino S. (2002) Recycled noble gas and nitrogen in the
 subcontinental lithospheric mantle: Implications from N-He-Ar in fluid inclusions of SE
 Australian xenoliths. Geochem. J. 36, 209–217.
- Matthews A., Fouillac C., Hill R., O'Nions R. K. and Oxburgh E. R. (1987) Mantle-derived volatiles in
 continental crust: the Massif Central of France. *Earth Planet. Sci. Lett.* 85, 117–128.
- Myers M., Stalker L., Pejcic B. and Ross A. (2013) Tracers Past, present and future applications in
 CO₂ geosequestration. *Appl. Geochemistry* **30**, 125–135.
- Newell D. L., Jessup M. J., Hilton D. R., Shaw C. A. and Hughes C. A. (2015) Mantle-derived helium in
 hot springs of the Cordillera Blanca, Peru: Implications for mantle-to-crust fluid transfer in a
 flat-slab subduction setting. *Chem. Geol.* 417, 200–209.
- 953 O'Nions R. K. and Oxburgh E. R. (1988) Helium, volatile fluxes and the development of continental
 954 crust. *Earth Planet. Sci. Lett.* **90**, 331–347.
- 955 Ozima M. and Podosek F. A. (2002) *Noble Gas Geochemistry.*, Cambridge University Press.
- Price R. C., Gray C. M. and Frey F. A. (1997) Strontium isotopic and trace element heterogeneity in
 the plains basalts of the Newer Volcanic Province, Victoria, Australia. *Geochim. Cosmochim. Acta* 61, 171–192.
- Roberts J. J., Gilfillan S. M. V., Stalker L. and Naylor M. (2017) Geochemical tracers for monitoring
 offshore CO₂ stores. *Int. J. Greenh. Gas Control* 65, 218–234.
- 961 Roberts J. J., Leplastrier A., Feitz A. J., Shipton Z. K., Bell A. F. and Karolyte R. (2019) Structural
- 962 controls on the location and distribution of CO₂ emission at a natural CO₂ spring in Daylesford,
 963 Australia. *Int. J. Greenh. Gas Control* 84, 36–46.
- Robertson G. B., Prescott J. R. and Hutton J. T. (1996) Thermoluminescence dating of volcanic activity
 at Mount Gambier, South Australia. *Trans. R. Soc. South Aust.* 120, 7–12.
- Rudnick R. L. and Fountain D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. *Rev. Geophys.* 33, 267–309.
- Ruzié L., Aubaud C., Moreira M., Agrinier P., Dessert C., Gréau C. and Crispi O. (2013) Carbon and
 helium isotopes in thermal springs of La Soufrière volcano (Guadeloupe, Lesser Antilles):
- 970 Implications for volcanological monitoring. *Chem. Geol.* **359**, 70–80.
- 971 Sakamoto M., Sano Y. and Wakita H. (1992) ³He/⁴He ratio distribution in and around the Hakone

972 volcano. *Geochem. J.* **26**, 189–195.

- Sano Y. and Marty B. (1995) Origin of carbon in fumarolic gas from island arcs. *Chem. Geol.* 119, 265–
 274.
- Sano Y., Takahata N. and Seno T. (2006) Geographical distribution of ³He/⁴He ratios in the Chugoku
 District, Southwestern Japan. *Pure Appl. Geophys.* 163, 745–757.
- Sano Y., Wakita H. and Williams S. N. (1990) Helium-isotope systematics at Nevado del Ruiz volcano,
 Colombia: implications for the volcanic hydrothermal system. *J. Volcanol. Geotherm. Res.* 42,
 41–52.
- 980 Sherwood Lollar B., Ballentine C. J. and O'Nions R. K. (1997) The fate of mantle-derived carbon in a
- 981 continental sedimentary basin: Integration of relationships and stable isotope signatures.
 982 *Geochim. Cosmochim. Acta* 61, 2295–2307.
- Sherwood Lollar B., O'Nions R. K. and Ballentine C. J. (1994) Helium and neon isotope systematics in
 carbon dioxide-rich and hydrocarbon-rich gas reservoirs. *Geochim. Cosmochim. Acta* 58, 5279–
 5290.
- Shugg A. (2009) Hepburn Spa: Cold carbonated mineral waters of Central Victoria, South Eastern
 Australia. *Environ. Geol.* 58, 1663–1673.
- 988 Smith S. P. (1985) Noble gas solubility in water at high temperature. *Eos (Washington. DC).* 66, 397.
- Stalker L. and Myers M. (2014) Tracers–pilot versus commercial scale deployment for carbon
 storage. *Energy Procedia* 63, 4199–4208.
- Teasdale J. P., Pryer L. L., Stuart-Smith P. G., Romine K. K., Etheridge M. A., Loutit T. S. and Kyan D.
 M. (2003) Structural framework and basin evolution of Australia's southern margin. *APPEA J.*43, 13–37.
- Tolstikhin I. N., Ballentine C. J., Polyak B. G., Prasolov E. M. and Kikvadze O. E. (2017) The noble gas
 isotope record of hydrocarbon field formation time scales. *Chem. Geol.* 471, 141–152.
- Torgersen T. (1980) Controls on pore-fluid concentration of ⁴He and ²²²Rn and the calculation of
 ⁴He/²²²Rn ages. J. Geochemical Explor. 13, 57–75.
- van Otterloo J., Cas R. A. F. and Sheard M. J. (2013) Eruption processes and deposit characteristics at
 the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating
 magmatic and phreatomagmatic activity. *Bull. Volcanol.* **75**, 737.

1001 van Otterloo J., Raveggi M., Cas R. A. F. and Maas R. (2014) Polymagmatic activity at the

- monogenetic Mt Gambier Volcanic Complex in the Newer Volcanics Province, SE Australia: New
 insights into the occurrence of intraplate volcanic activity in Australia. *J. Petrol.* 55, 1317–1351.
- Walton N. R. G. (1989) Electrical conductivity and Total Dissolved Solids—what is their precise
 relationship? *Desalination* 72, 275–292.
- 1006 Warr O., Sherwood Lollar B., Fellowes J., Sutcliffe C. N., McDermott J. M., Holland G., Mabry J. C. and
- 1007 Ballentine C. J. (2018) Tracing ancient hydrogeological fracture network age and
- 1008 compartmentalisation using noble gases. *Geochim. Cosmochim. Acta* **222**, 340–362.
- Watson M. N., Boreham C. J. and Tingate P. R. (2004) Carbon dioxide and carbonate cements in the
 Otway Basin; implications for geological storage of carbon dioxide. *APPEA J.* 44, 703–720.
- Watson M. N., Zwingmann N., Lemon N. M. and Tingate P. R. (2003) Onshore Otway Basin carbon
 dioxide accumulations: CO₂-induced diagenesis in natural analogues for underground storage
 of greenhouse gas. APPEA J. 43, 637–653.
- Weast R. C., Astle M. J. and Beyer W. H. (1988) *CRC Handbook of Chemistry and Physics.*, CRC press
 Boca Raton, FL.
- 1016 Weinlich F. H., Bräuer K., Kämpf H., Strauch G., Tesař J. and Weise S. M. (1999) An active

1017 subcontinental mantle volatile system in the western Eger rift, Central Europe: Gas flux,

- isotopic (He, C, and N) and compositional fingerprints. *Geochim. Cosmochim. Acta* 63, 3653–
 3671.
- Wellman P. (1983) Hotspot volcanism in Australia and New Zealand: Cainozoic and mid-Mesozoic.
 Tectonophysics 96, 225–243.
- Wellman P. and McDougall I. (1974) Cainozoic igneous activity in eastern Australia. *Tectonophysics* **23**, 49–65.
- 1024 Wilkinson M., Gilfillan S. M. V, Haszeldine R. S. and Ballentine C. J. (2009) Plumbing the Depths:

1025

1026 *sequestration in geological media-State of the science* AAPG Special Volumes. pp. 619–634.

Testing Natural Tracers of Subsurface CO₂ Origin and Migration, Utah. In Carbon dioxide

- Williams S. N., Sano Y. and Wakita H. (1987) Helium-3 emission from Nevado Del Ruiz Volcano,
 Colombia. *Geophys. Res. Lett.* 14, 1035–1038.
- 1029 Wycherley H., Fleet A. and Shaw H. (1999) Some observations on the origins of large volumes of

- 1030 carbon dioxide accumulations in sedimentary basins. *Mar. Pet. Geol.* **16**, 489–494.
- Zartman R. E., Wasserburg G. J. and Reynolds J. H. (1961) Helium, argon, and carbon in some natural
 gases. *J. Geophys. Res.* 66, 277–306.
- 1033 Zhou Z. and Ballentine C. J. (2006) ⁴He dating of groundwater associated with hydrocarbon
- 1034 reservoirs. *Chem. Geol.* **226**, 309–327.