73 research outputs found

    Identification of Mammalian Mitochondrial Translational Initiation Factor 3 and Examination of Its Role in Initiation Complex Formation with Natural mRNAs

    Get PDF
    Human mitochondrial translational initiation factor 3 (IF3(mt)) has been identified from the human expressed sequence tag data base. Using consensus sequences derived from conserved regions of the bacterial IF3, several partially sequenced cDNA clones were identified, and the complete sequence was assembled in silico from overlapping clones. IF3(mt) is 278 amino acid residues in length. MitoProt II predicts a 97% probability that this protein will be localized in mitochondria and further predicts that the mature protein will be 247 residues in length. The cDNA for the predicted mature form of IF3(mt) was cloned, and the protein was expressed in Escherichia coli in a His-tagged form. The mature form of IF3(mt) has short extensions on the N and C termini surrounding a region homologous to bacterial IF3. The region of IF3(mt) homologous to prokaryotic factors ranges between 21-26% identical to the bacterial proteins. Purified IF3(mt) promotes initiation complex formation on mitochondrial 55 S ribosomes in the presence of mitochondrial initiation factor 2 (IF2(mt)), [(35)S]fMet-tRNA, and either poly(A,U,G) or an in vitro transcript of the cytochrome oxidase subunit II gene as mRNA. IF3(mt) shifts the equilibrium between the 55 S mitochondrial ribosome and its subunits toward subunit dissociation. In addition, the ability of E. coli initiation factor 1 to stimulate initiation complex formation on E. coli 70 S and mitochondrial 55 S ribosomes was investigated in the presence of IF2(mt) and IF3(mt)

    The Small Subunit of the Mammalian Mitochondrial Ribosome: IDENTIFICATION OF THE FULL COMPLEMENT OF RIBOSOMAL PROTEINS PRESENT

    Get PDF
    Identification of all the protein components of the small subunit (28 S) of the mammalian mitochondrial ribosome has been achieved by carrying out proteolytic digestions of whole 28 S subunits followed by analysis of the resultant peptides by liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptide sequence information was used to search the human EST data bases and complete coding sequences of the proteins were assembled. The human mitochondrial ribosome has 29 distinct proteins in the small subunit. Fourteen of this group of proteins are homologs of the Escherichia coli 30 S ribosomal proteins S2, S5, S6, S7, S9, S10, S11, S12, S14, S15, S16, S17, S18, and S21. All of these proteins have homologs in Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae mitochondrial ribosomes. Surprisingly, three variants of ribosomal protein S18 are found in the mammalian and D. melanogaster mitochondrial ribosomes while C. elegans has two S18 homologs. The S18 homologs tend to be more closely related to chloroplast S18s than to prokaryotic S18s. No mitochondrial homologs to prokaryotic ribosomal proteins S1, S3, S4, S8, S13, S19, and S20 could be found in the peptides obtained from the whole 28 S subunit digests or by analysis of the available data bases. The remaining 15 proteins present in mammalian mitochondrial 28 S subunits (MRP-S22 through MRP-S36) are specific to mitochondrial ribosomes. Proteins in this group have no apparent homologs in bacterial, chloroplast, archaebacterial, or cytosolic ribosomes. All but two of these proteins have a clear homolog in D. melanogaster while all but three can be found in the genome of C. elegans. Five of the mitochondrial specific ribosomal proteins have homologs in S. cerevisiae

    Reconstructing the evolution of the mitochondrial ribosomal proteome

    Get PDF
    For production of proteins that are encoded by the mitochondrial genome, mitochondria rely on their own mitochondrial translation system, with the mitoribosome as its central component. Using extensive homology searches, we have reconstructed the evolutionary history of the mitoribosomal proteome that is encoded by a diverse subset of eukaryotic genomes, revealing an ancestral ribosome of alpha-proteobacterial descent that more than doubled its protein content in most eukaryotic lineages. We observe large variations in the protein content of mitoribosomes between different eukaryotes, with mammalian mitoribosomes sharing only 74 and 43% of its proteins with yeast and Leishmania mitoribosomes, respectively. We detected many previously unidentified mitochondrial ribosomal proteins (MRPs) and found that several have increased in size compared to their bacterial ancestral counterparts by addition of functional domains. Several new MRPs have originated via duplication of existing MRPs as well as by recruitment from outside of the mitoribosomal proteome. Using sensitive profile–profile homology searches, we found hitherto undetected homology between bacterial and eukaryotic ribosomal proteins, as well as between fungal and mammalian ribosomal proteins, detecting two novel human MRPs. These newly detected MRPs constitute, along with evolutionary conserved MRPs, excellent new screening targets for human patients with unresolved mitochondrial oxidative phosphorylation disorders

    The Large Subunit of the Mammalian Mitochondrial Ribosome: ANALYSIS OF THE COMPLEMENT OF RIBOSOMAL PROTEINS PRESENT

    Get PDF
    Identification of all the protein components of the large subunit (39 S) of the mammalian mitochondrial ribosome has been achieved by carrying out proteolytic digestions of whole 39 S subunits followed by analysis of the resultant peptides by liquid chromatography and mass spectrometry. Peptide sequence information was used to search the human EST data bases and complete coding sequences were assembled. The human mitochondrial 39 S subunit has 48 distinct proteins. Twenty eight of these are homologs of the Escherichia coli 50 S ribosomal proteins L1, L2, L3, L4, L7/L12, L9, L10, L11, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L27, L28, L30, L32, L33, L34, L35, and L36. Almost all of these proteins have homologs in Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae mitochondrial ribosomes. No mitochondrial homologs to prokaryotic ribosomal proteins L5, L6, L25, L29, and L31 could be found either in the peptides obtained or by analysis of the available data bases. The remaining 20 proteins present in the 39 S subunits are specific to mitochondrial ribosomes. Proteins in this group have no apparent homologs in bacterial, chloroplast, archaebacterial, or cytosolic ribosomes. All but two of the proteins has a clear homolog in D. melanogaster while all can be found in the genome of C. elegans. Ten of the 20 mitochondrial specific 39 S proteins have homologs in S. cerevisiae. Homologs of 2 of these new classes of ribosomal proteins could be identified in the Arabidopsis thaliana genome

    Ribosomal RNAs are tolerant toward genetic insertions: evolutionary origin of the expansion segments

    Get PDF
    Ribosomal RNAs (rRNAs), assisted by ribosomal proteins, form the basic structure of the ribosome, and play critical roles in protein synthesis. Compared to prokaryotic ribosomes, eukaryotic ribosomes contain elongated rRNAs with several expansion segments and larger numbers of ribosomal proteins. To investigate architectural evolution and functional capability of rRNAs, we employed a Tn5 transposon system to develop a systematic genetic insertion of an RNA segment 31 nt in length into Escherichia coli rRNAs. From the plasmid library harboring a single rRNA operon containing random insertions, we isolated surviving clones bearing rRNAs with functional insertions that enabled rescue of the E. coli strain (Δ7rrn) in which all chromosomal rRNA operons were depleted. We identified 51 sites with functional insertions, 16 sites in 16S rRNA and 35 sites in 23S rRNA, revealing the architecture of E. coli rRNAs to be substantially flexible. Most of the insertion sites show clear tendency to coincide with the regions of the expansion segments found in eukaryotic rRNAs, implying that eukaryotic rRNAs evolved from prokaryotic rRNAs suffering genetic insertions and selections

    Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit

    Get PDF
    The bacterial Ras-like protein Era has been reported previously to bind 16S rRNA within the 30S ribosomal subunit and to play a crucial role in ribosome assembly. An orthologue of this essential GTPase ERAL1 (Era G-protein-like 1) exists in higher eukaryotes and although its exact molecular function and cellular localization is unknown, its absence has been linked to apoptosis. In the present study we show that human ERAL1 is a mitochondrial protein important for the formation of the 28S small mitoribosomal subunit. We also show that ERAL1 binds in vivo to the rRNA component of the small subunit [12S mt (mitochondrial)-rRNA]. Bacterial Era associates with a 3′ unstructured nonanucleotide immediately downstream of the terminal stem–loop (helix 45) of 16S rRNA. This site contains an AUCA sequence highly conserved across all domains of life, immediately upstream of the anti-Shine–Dalgarno sequence, which is conserved in bacteria. Strikingly, this entire region is absent from 12S mt-rRNA. We have mapped the ERAL1-binding site to a 33 nucleotide section delineating the 3′ terminal stem–loop region of 12S mt-rRNA. This loop contains two adenine residues that are reported to be dimethylated on mitoribosome maturation. Furthermore, and also in contrast with the bacterial orthologue, loss of ERAL1 leads to rapid decay of nascent 12S mt-rRNA, consistent with a role as a mitochondrial RNA chaperone. Finally, whereas depletion of ERAL1 leads to apoptosis, cell death occurs prior to any appreciable loss of mitochondrial protein synthesis or reduction in the stability of mitochondrial mRNA

    APEX Fingerprinting Reveals the Subcellular Localization of Proteins of Interest

    Get PDF
    Deciphering the sub-compartmental location of a given protein of interest may help explain its physiological function, but it can be challenging to do using optical or biochemical methods. Imaging with electron microscopy (EM) can provide highly resolved mapping of proteins; however, EM requires complex sample preparation and a specialized facility. Here, we use engineered ascorbate peroxidase (APEX)-generated molecular labeling patterns to provide information regarding intracellular microenvironments in living cells. Using APEX labeling of specific proteins, we uncovered subcellular localization at sub-compartmental resolution and successfully elucidated the membrane protein topology of HMOX1 and sub-mitochondrial localization of recently identified mitochondrial proteins. This method can be expanded to confirm sub-mitochondrial localization and membrane topologies of previously identified mitochondrial proteins. Lee et al. examine subcellular localization at sub-compartmental resolution using APEX labeling of specific proteins. The method is used to reveal the sub-mitochondrial localization of recently identified mitochondrial proteins, as well as the membrane topology of the ER protein HMOX1.clos

    Death-associated protein 3 is overexpressed in human thyroid oncocytic tumours

    Get PDF
    Background: The human death-associated protein 3 (hDAP3) is a GTP-binding constituent of the small subunit of the mitochondrial ribosome with a pro-apoptotic function.Methods: A search through publicly available microarray data sets showed 337 genes potentially coregulated with the DAP3 gene. The promoter sequences of these 337 genes and 70 out of 85 mitochondrial ribosome genes were analysed in silico with the DAP3 gene promoter sequence. The mitochondrial role of DAP3 was also investigated in the thyroid tumours presenting various mitochondrial contents. Results: The study revealed nine transcription factors presenting enriched motifs for these gene promoters, five of which are implicated in cellular growth (ELK1, ELK4, RUNX1, HOX11-CTF1, TAL1-ternary complex factor 3) and four in mitochondrial biogenesis (nuclear respiratory factor-1 (NRF-1), GABPA, PPARG-RXRA and estrogen-related receptor alpha (ESRRA)). An independent microarray data set showed the overexpression of ELK1, RUNX1 and ESRRA in the thyroid oncocytic tumours. Exploring the thyroid tumours, we found that DAP3 mRNA and protein expression is upregulated in tumours presenting a mitochondrial biogenesis compared with the normal tissue. ELK1 and ESRRA were also showed upregulated with DAP3. Conclusion: ELK1 and ESRRA may be considered as potential regulators of the DAP3 gene expression. DAP3 may participate in mitochondrial maintenance and play a role in the balance between mitochondrial homoeostasis and tumourigenesis

    ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation

    Get PDF
    ERAL1, a homologue of Era protein in Escherichia coli, is a member of conserved GTP-binding proteins with RNA-binding activity. Depletion of prokaryotic Era inhibits cell division without affecting chromosome segregation. Previously, we isolated ERAL1 protein as one of proteins which were associated with mitochondrial transcription factor A by using immunoprecipitation. In this study, we analysed the localization and function of ERAL1 in mammalian cells. ERAL1 was localized in mitochondrial matrix and associated with mitoribosomal proteins including the 12S rRNA. siRNA knockdown of ERAL1 decreased mitochondrial translation, caused redistribution of ribosomal small subunits and reduced 12S rRNA. The knockdown of ERAL1 in human HeLa cells elevated mitochondrial superoxide production and slightly decreased mitochondrial membrane potential. The knockdown inhibited the growth of HeLa cells with an accumulation of apoptotic cells. These results suggest that ERAL1 is localized in a small subunit of the mitochondrial ribosome, plays an important role in the small ribosomal constitution, and is also involved in cell viability

    MRPS18CP2 alleles and DEFA3 absence as putative chromosome 8p23.1 modifiers of hearing loss due to mtDNA mutation A1555G in the 12S rRNA gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondrial DNA (mtDNA) mutations account for at least 5% of cases of postlingual, nonsyndromic hearing impairment. Among them, mutation A1555G is frequently found associated with aminoglycoside-induced and/or nonsyndromic hearing loss in families presenting with extremely variable clinical phenotypes. Biochemical and genetic data have suggested that nuclear background is the main factor involved in modulating the phenotypic expression of mutation A1555G. However, although a major nuclear modifying locus was located on chromosome 8p23.1 and regardless intensive screening of the region, the gene involved has not been identified.</p> <p>Methods</p> <p>With the aim to gain insights into the factors that determine the phenotypic expression of A1555G mutation, we have analysed in detail different genetic and genomic elements on 8p23.1 region (<it>DEFA3 </it>gene absence, <it>CLDN23 </it>gene and <it>MRPS18CP2 </it>pseudogene) in a group of 213 A1555G carriers.</p> <p>Results</p> <p>Family based association studies identified a positive association for a polymorphism on <it>MRPS18CP2 </it>and an overrepresentation of <it>DEFA3 </it>gene absence in the deaf group of A1555G carriers.</p> <p>Conclusion</p> <p>Although none of the factors analysed seem to have a major contribution to the phenotype, our findings provide further evidences of the involvement of 8p23.1 region as a modifying locus for A1555G 12S rRNA gene mutation.</p
    corecore