66 research outputs found

    The mobility of two kinase domains in the Escherichia coli chemoreceptor array varies with signalling state

    Get PDF
    Motile bacteria sense their physical and chemical environment through highly cooperative, ordered arrays of chemoreceptors. These signalling complexes phosphorylate a response regulator which in turn governs flagellar motor reversals, driving cells towards favourable environments. The structural changes that translate chemoeffector binding into the appropriate kinase output are not known. Here, we apply high-resolution electron cryotomography to visualize mutant chemoreceptor signalling arrays in well-defined kinase activity states. The arrays were well ordered in all signalling states, with no discernible differences in receptor conformation at 2–3 nm resolution. Differences were observed, however, in a keel-like density that we identify here as CheA kinase domains P1 and P2, the phosphorylation site domain and the binding domain for response regulator target proteins. Mutant receptor arrays with high kinase activities all exhibited small keels and high proteolysis susceptibility, indicative of mobile P1 and P2 domains. In contrast, arrays in kinase-off signalling states exhibited a range of keel sizes. These findings confirm that chemoreceptor arrays do not undergo large structural changes during signalling, and suggest instead that kinase activity is modulated at least in part by changes in the mobility of key domains

    The acute transcriptional response to resistance exercise: impact of age and contraction mode

    Get PDF
    Optimization of resistance exercise (RE) remains a hotbed of research for muscle building and maintenance. However, the interactions between the contractile components of RE (i.e. concentric (CON) and eccentric (ECC)) and age, are poorly defined. We used transcriptomics to compare age-related molecular responses to acute CON and ECC exercise. Eight young (21±1 y) and eight older (70±1 y) exercise-naïve male volunteers had vastus lateralis biopsies collected at baseline and 5 h post unilateral CON and contralateral ECC exercise. RNA was subjected to next-generation sequencing and differentially expressed (DE) genes tested for pathway enrichment using Gene Ontology (GO). The young transcriptional response to CON and ECC was highly similar and older adults displayed moderate contraction-specific profiles, with no GO enrichment. Age-specific responses to ECC revealed 104 DE genes unique to young, and 170 DE genes in older muscle, with no GO enrichment. Following CON, 15 DE genes were young muscle-specific, whereas older muscle uniquely expressed 147 up-regulated genes enriched for cell adhesion and blood vessel development, and 28 down-regulated genes involved in mitochondrial respiration, amino acid and lipid metabolism. Thus, older age is associated with contraction-specific regulation often without clear functional relevance, perhaps reflecting a degree of stochastic age-related dysregulation.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.CSD was funded by a doctoral training studentship from Bournemouth University. This work was generously supported by the Wellcome Trust Institutional Strategic Support Award (WT105618MA). RMA is generously supported by the Wellcome Trust Institutional Strategic Support Award (WT105618MA) and an EPSRC/BBSRC Innovation Fellowship (EP/S001352/1). We acknowledge the Medical Research Council [grant number MR/P021220/1] [grant number MR/K00414X/1] and Arthritis Research UK [grant number 19891] as part of the MRC-ARUK Centre for Musculoskeletal Ageing Research awarded to the Universities of Nottingham and Birmingham, and the National Institute for Health Research, Nottingham Biomedical Research Centre. This work was supported by the Biotechnology and Biological Sciences Research Council [grant number BB/N015894/1]. This work was supported by a grant from the Swedish Research Council for Sport Science (dnr 2016/125 and dnr 2017/143). C.R.G.W is supported by the Biotechnology and Biological Sciences Research Council-funded South West Biosciences Doctoral Training Partnership [BB/J014400/1; BB/M009122/1].Published versio

    Neonicotinoid seed treatments of soybean provide negligible benefits to US farmers

    Get PDF
    Neonicotinoids are the most widely used insecticides worldwide and are typically deployed as seed treatments (hereafter NST) in many grain and oilseed crops, including soybeans. However, there is a surprising dearth of information regarding NST effectiveness in increasing soybean seed yield, and most published data suggest weak, or inconsistent yield benefit. The US is the key soybean-producing nation worldwide and this work includes soybean yield data from 194 randomized and replicated field studies conducted specifically to evaluate the effect of NSTs on soybean seed yield at sites within 14 states from 2006 through 2017. Here we show that across the principal soybean-growing region of the country, there are negligible and management-specific yield benefits attributed to NSTs. Across the entire region, the maximum observed yield benefits due to fungicide (FST = fungicide seed treatment) + neonicotinoid use (FST + NST) reached 0.13 Mg/ha. Across the entire region, combinations of management practices affected the effectiveness of FST + N ST to increase yield but benefits were minimal ranging between 0.01 to 0.22 Mg/ha. Despite widespread use, this practice appears to have little benefit for most of soybean producers; across the entire region, a partial economic analysis further showed inconsistent evidence of a break-even cost of FST or FST + N ST. These results demonstrate that the current widespread prophylactic use of NST in the key soybean-producing areas of the US should be re-evaluated by producers and regulators alike

    Neonicotinoid seed treatments of soybean provide negligible benefits to US farmers

    Get PDF
    Neonicotinoids are the most widely used insecticides worldwide and are typically deployed as seed treatments (hereafter NST) in many grain and oilseed crops, including soybeans. However, there is a surprising dearth of information regarding NST effectiveness in increasing soybean seed yield, and most published data suggest weak, or inconsistent yield benefit. The US is the key soybean-producing nation worldwide and this work includes soybean yield data from 194 randomized and replicated field studies conducted specifically to evaluate the effect of NSTs on soybean seed yield at sites within 14 states from 2006 through 2017. Here we show that across the principal soybean-growing region of the country, there are negligible and management-specific yield benefits attributed to NSTs. Across the entire region, the maximum observed yield benefits due to fungicide (FST = fungicide seed treatment) + neonicotinoid use (FST + NST) reached 0.13 Mg/ha. Across the entire region, combinations of management practices affected the effectiveness of FST + N ST to increase yield but benefits were minimal ranging between 0.01 to 0.22 Mg/ha. Despite widespread use, this practice appears to have little benefit for most of soybean producers; across the entire region, a partial economic analysis further showed inconsistent evidence of a break-even cost of FST or FST + N ST. These results demonstrate that the current widespread prophylactic use of NST in the key soybean-producing areas of the US should be re-evaluated by producers and regulators alike

    Allosteric activation shifts the rate-limiting step in a short-form ATP phosphoribosyltransferase

    Get PDF
    This work was supported by a Wellcome Trust Institutional Strategic Support Fund to the University of St Andrews, and the Biotechnology and Biological Sciences Research Council (BBSRC) [grant number BB/M010996/1] via an EASTBIO Doctoral Training Partnership studentship to GF. RS was the recipient of an Erasmus Undergraduate Fellowship.Short-form ATP phosphoribosyltransferase (ATPPRT) is a hetero-octameric allosteric enzyme comprising four catalytic subunits (HisGS) and four regulatory subunits (HisZ). ATPPRT catalyzes the Mg2+-dependent condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-β-d-ribosyl)-ATP (PRATP) and pyrophosphate, the first reaction of histidine biosynthesis. While HisGS is catalytically active on its own, its activity is allosterically enhanced by HisZ in the absence of histidine. In the presence of histidine, HisZ mediates allosteric inhibition of ATPPRT. Here, initial velocity patterns, isothermal titration calorimetry, and differential scanning fluorimetry establish a distinct kinetic mechanism for ATPPRT where PRPP is the first substrate to bind. AMP is an inhibitor of HisGS, but steady-state kinetics and 31P NMR spectroscopy demonstrate that ADP is an alternative substrate. Replacement of Mg2+ by Mn2+ enhances catalysis by HisGS but not by the holoenzyme, suggesting different rate-limiting steps for nonactivated and activated enzyme forms. Density functional theory calculations posit an SN2-like transition state stabilized by two equivalents of the metal ion. Natural bond orbital charge analysis points to Mn2+ increasing HisGS reaction rate via more efficient charge stabilization at the transition state. High solvent viscosity increases HisGS’s catalytic rate, but decreases the hetero-octamer’s, indicating that chemistry and product release are rate-limiting for HisGS and ATPPRT, respectively. This is confirmed by pre-steady-state kinetics, with a burst in product formation observed with the hetero-octamer but not with HisGS. These results are consistent with an activation mechanism whereby HisZ binding leads to a more active conformation of HisGS, accelerating chemistry beyond the product release rate.Publisher PDFPeer reviewe

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Guide to Geographical Indications: Linking Products and Their Origins (Summary)

    Full text link

    Modelling psychosocial influences on the distress and impairment caused by psychotic-like experiences in children and adolescents

    No full text
    Abstract Psychological understanding of psychotic-like experiences (PLEs) occurring in childhood is limited, with no recognised conceptual framework to guide appropriate intervention. We examined the contribution to PLE severity of emotional, cognitive and socio-environmental mechanisms thought to influence the development and maintenance of psychosis. Forty 8–14 year olds referred to a community Child and Adolescent Mental Health Service completed a battery of questionnaires and assessments measuring severity of PLEs, emotional problems, cognitive biases, and negative life events. 85 % of children assessed reported having experienced a PLE over the previous year, and 55 % reported more than one. 60 % had experienced at least one in the previous fortnight. Multiple linear regression demonstrated that each of the variables made a significant and independent contribution to PLE severity, after adjusting for verbal ability and age, accounting together for more than half of the variance (reasoning B = 6.324, p = .049, emotion B = 1.807, p = .005, life events B = 4.039, p = .001). PLEs were common in this clinical sample of children. Psychological factors implicated in the development and maintenance of psychosis in adults were also associated with PLE severity in these children. PLE severity may be reduced by targeting each of these factors in cognitive therapy, at this very early stage. Any improvements in emotional wellbeing and functioning may then increase future resilience
    • …
    corecore