70 research outputs found

    Copolymers of glutamic acid and tyrosine are potent inhibitors of oocyte casein kinase II

    Get PDF
    AbstractPolypeptides rich in glutamic acid are strong inhibitors purified from isolated nuclei of Xenopus laevis oocytes of casein kinase II. The presence of tyrosine in these peptides greatly enhances their inhibitory capacity. Using casein as a substrate, copolyglu:tyr (4:1) has an I50 value of 20 nM, 250 fold lower than that of polyglutamic acid which is 5 ÎŒM. A similar large difference is observed when a synthetic peptide is used as substrate. The inhibition of copolyglu:tyr is competitive with casein and can be completely reversed by high ionic strength. The relative inhibitory capacity of the polypeptides tested, in descending order, is copolyglu:tyr (4:1) > copolyglu:tyr (1:1) > polyglu > copolyglu:phe (4:1) > copolyglu:ala ( > copolyglu:leu (4:1). The high affinity for tyrosine-containing acid peptides is shared by rat liver and yeast casein kinase II so that it seems to be a general property of these enzymes

    Structural Features Underlying the Multisite Phosphorylation of the A Domain of the NF-AT4 Transcription Factor by Protein Kinase CK1 †

    Get PDF
    ABSTRACT: The phosphorylation and dephosphorylation of the NF-AT family of transcription factors play a key role in the activation of T lymphocytes and in the control of the immune response. The mechanistic aspects of NF-AT4 phosphorylation by protein kinase CK1 have been studied in this work with the aid of a series of 27 peptides, reproducing with suitable modifications the regions of NF-AT4 that have been reported to be phosphorylated by this protein kinase. The largest parent peptide, representing the three regions A, Z, and L spanning amino acids 173-218, is readily phosphorylated by CK1 at seryl residues belonging to the A2 segment, none of which fulfill the canonical consensus sequence for CK1. An acidic cluster of amino acids in the linker region between domains A and Z is essential for high-efficiency phosphorylation of the A2 domain, as shown by the increase in K m caused by a deletion of the linker region or a substitution of the acidic residues with glycines. Individual substitutions with alanine of each of the five serines in the A2 domain (S-177, S-180, S-181, S-184, and S-186) reduce the phosphorylation rate, the most detrimental effect being caused by Ser177 substitution which results in a 10-fold drop in V max . On the contrary, the replacement of Ser177 with phosphoserine triggers a hierarchical effect with a dramatic improvement in phosphorylation efficiency, which no longer depends on the linker region for optimal efficiency. These data are consistent with a two-phase phosphorylation mechanism of NF-AT4 by CK1, initiated by the linker region which provides a functional docking site for CK1 and allows the unorthodox phosphorylation of Ser177; once achieved, this phosphoserine residue primes the phosphorylation of other downstream seryl residues, according to a hierarchical mechanism typically exploited by CK1. The large number of protein kinases in eukaryotes, with over 800 genes found in the human genome (1), raises multiple questions as to the function and specificity of these important enzymes. In recent years, several laboratories, including ours, have approached the study of the substrate specificity of protein kinases. These studies have concentrated on the analysis of the amino acid sequences surrounding the immediate vicinity of the sites that are phosphorylated in vivo and in vitro by specific kinases and on the preparation of synthetic peptides that contain these sequences and serve as substrates for these particular enzymes (2-5). These studies have been very useful in determining the consensus sequence recognized preferentially by the active center of these kinases and in predicting the domains of new proteins that are probably phosphorylated by these enzymes. In addition, this approach has allowed us to design several peptides that are highly specific for kinases and that can be employed in assaying for the activity of these kinases in crude extracts of cells and tissues (e.g., refs 5-7). The studies with short peptides, however, demonstrated that these model molecules are sometimes less efficient than the true physiological substrates. In addition, several sequences that contain the defined consensus for phosphorylation by these kinases are not phosphorylated in the native proteins. Conversely, atypical sites that are not acted upon in model peptides serve as good substrates within the context of whole proteins (5). These results clearly indicate that the phosphorylation of proteins by protein kinases involves recognition and interactions that go beyond the immediate vicinity of the acceptor serines or threonines in the substrates. The recent discovery that several protein kinases recognize "docking sites" which are distant from the phosphorylatable residues in their protein substrates constitutes an important step toward the understanding of some of the complexities that provide specificity in kinase-protein substrate interactions (8)

    Searches for Metal-Poor Stars from the Hamburg/ESO Survey using the CH G-band

    Full text link
    We describe a new method to search for metal-poor candidates from the Hamburg/ESO objective-prism survey (HES) based on identifying stars with apparently strong CH G-band strengths for their colors. The hypothesis we exploit is that large over-abundances of carbon are common among metal-poor stars. The selection was made by considering two line indices in the 4300A region, applied directly to the low-resolution prism spectra. This work also extends a previously published method by adding bright sources to the sample. The spectra of these stars suffer from saturation effects, compromising the index calculations and leading to an undersampling of the brighter candidates. Visual inspection and classification of the spectra from the HES plates yielded a list of 5,288 new metal-poor candidates, which are presently being used as targets for medium-resolution spectroscopic follow-up. Estimates of the stellar atmospheric parameters, as well as carbon abundances, are now available for 117 of the first candidates, based on follow-up medium-resolution spectra obtained with the SOAR 4.1m and Gemini 8m telescopes. We demonstrate that our new method improves the metal-poor star fractions found by our pilot study by up to a factor of three in the same magnitude range, as compared with our pilot study based on only one CH G-band index. Our selection scheme obtained roughly a 40% success rate for identification of stars with [Fe/H] < -1.0; the primary contaminant is late-type stars with near solar abundances and, often, emission line cores that filled in the CaII K line on the prism spectrum. Because the selection is based on carbon, we greatly increase the numbers of known CEMP stars from the HES with intermediate metallicities -2.0 < [Fe/H] < -1.0, which previous survey efforts undersampled. There are eight newly discovered stars with [Fe/H] < -3.0 in our sample, including two with [Fe/H] < -3.5.Comment: 18 pages, 13 figures; accepted for publication in A

    Carbon-Enhanced Metal-Poor Stars in the Inner and Outer Halo Components of the Milky Way

    Get PDF
    (Abridged) Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30000 calibration stars from the Sloan Digital Sky Survey (SDSS). Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios ("carbonicity") in excess of [C/Fe]=+0.7 = +0.7 are considered CEMP stars, the global frequency of CEMP stars in the halo system for \feh\ <−1.5< -1.5 is 8%; for \feh\ <−2.0< -2.0 it is 12%; for \feh\ <−2.5<-2.5 it is 20%. We also confirm a significant increase in the level of carbon enrichment with declining metallicity, growing from $\sim +1.0$ at \feh\ $= -1.5$ to ∌+1.7\sim +1.7 at \feh\ =−2.7= -2.7. The nature of the carbonicity distribution function (CarDF) changes dramatically with increasing distance above the Galactic plane, ∣|Z∣|. For ∣|Z∣| <5< 5 kpc, relatively few CEMP stars are identified. For distances ∣|Z∣| >5> 5 kpc, the CarDF exhibits a strong tail towards high values, up to [C/Fe] >> +3.0. We also find a clear increase in the CEMP frequency with ∣|Z∣|. For stars with −2.0<-2.0 < [Fe/H] <−< -1.5, the frequency grows from 5% at ∣|Z∣| ∌2\sim 2 kpc to 10% at ∣|Z∣| ∌10\sim 10 kpc. For stars with [Fe/H] <−< -2.0, the frequency grows from 8% at ∣|Z∣| ∌2\sim 2 kpc to 25% at ∣|Z∣| ∌10\sim 10 kpc. For stars with −2.0<-2.0 < [Fe/H] $\sim +1.0$ for 0 kpc $<$ $|$Z$|$ $<$ 10 kpc, with little dependence on $|$Z$|$; for [Fe/H] $< -$2.0, ∌+1.5\sim +1.5, again roughly independent of ∣|Z∣|.Comment: Accepted for publication in the Astrophysical Journal, 32 pages, 15 figure

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z∌0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z∌0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    The Effect of Carbon Grain Destruction on the Chemical Structure of Protoplanetary Disks

    Get PDF
    The bulk composition of Earth is dramatically carbon-poor compared to that of the interstellar medium, and this phenomenon extends to the asteroid belt. To interpret this carbon deficit problem, the carbonaceous component in grains must have been converted into the gas phase in the inner regions of protoplanetary disks (PPDs) prior to planetary formation. We examine the effect of carbon grain destruction on the chemical structure of disks by calculating the molecular abundances and distributions using a comprehensive chemical reaction network. When carbon grains are destroyed and the elemental abundance of the gas becomes carbon-rich, the abundances of carbon-bearing molecules, such as HCN and carbon-chain molecules, increase dramatically near the midplane, while oxygen-bearing molecules, such as H₂O and CO₂, are depleted. We compare the results of these model calculations with the solid carbon-to-silicon fraction in the solar system. Although we find a carbon depletion gradient, there are some quantitative discrepancies: the model shows a higher value at the position of the asteroid belt and a lower value at the location of Earth. In addition, using the obtained molecular abundance distributions, coupled with line radiative transfer calculations, we make predictions for ALMA to potentially observe the effect of carbon grain destruction in nearby PPDs. The results indicate that HCN, HÂčÂłCN, and c-C₃H₂ may be good tracers

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2,MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA,the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. In addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions ofthe SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE.This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. The SDSS website, http://www.sdss.org, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.PostprintPeer reviewe

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    • 

    corecore