87 research outputs found

    Feasibility and Safety of Multicenter Tissue and Biofluid Sampling for α-Synuclein in Parkinson's Disease: The Systemic Synuclein Sampling Study (S4)

    Get PDF
    BACKGROUND: α-synuclein is a lead Parkinson's disease (PD) biomarker. There are conflicting reports regarding accuracy of α-synuclein in different tissues and biofluids as a PD biomarker, and the within-subject anatomical distribution of α-synuclein is not well described. The Systemic Synuclein Sampling Study (S4) aims to address these gaps in knowledge. The S4 is a multicenter, cross-sectional, observational study evaluating α-synuclein in multiple tissues and biofluids in PD and healthy controls (HC). OBJECTIVE: To describe the baseline characteristics of the S4 cohort and safety and feasibility of this study. METHODS: Participants underwent motor and non-motor clinical assessments, dopamine transporter SPECT, biofluid collection (cerebrospinal fluid, saliva, and blood), and tissue biopsies (skin, sigmoid colon, and submandibular gland). Biopsy adequacy was determined based on presence of adequate target tissue. Tissue sections were stained with the 5C12 monoclonal antibody against unmodified α-synuclein. All specimens were acquired and processed in a standardized manner. Adverse events were systematically recorded. RESULTS: The final cohort consists of 82 participants (61 PD, 21 HC). In 68 subjects (83%), all types of specimens were obtained but only 50 (61%) of subjects had all specimens both collected and evaluable for α-synuclein. Mild adverse events were common, especially for submandibular gland biopsy, but only 1 severe adverse event occurred. CONCLUSION: Multicenter tissue and biofluid sampling for α-synuclein is feasible and generally safe. S4 will inform understanding of the concurrent distribution of α-synuclein pathology and biomarkers in biofluids and peripheral nervous system in PD

    Long-term dementia prevalence in Parkinson Disease: Glass half-full?

    Get PDF
    Introduction: Dementia occurs in up to 80% of Parkinson’s disease (PD) patients long-term, but studies reporting such high rates were published years ago and had relatively small sample sizes and other limitations. Objective: To determine long-term, cumulative dementia prevalence rates in PD using data from two large, ongoing, prospective observational studies. Design: Analyses of data from the Parkinson’s Progression Markers Initiative (PPMI) and a longstanding PD research clinical core at the University of Pennsylvania (Penn). Setting: PPMI is a multi-site international study, and Penn is a single site study at a tertiary movement disorders center. Participants: PPMI enrolls de novo, untreated PD participants at baseline, and Penn enrolls a convenience cohort from a large clinical center. Methods: For PPMI a cognitive battery and MDS-UPDRS Part I are administered annually, and the site investigator assigns a cognitive diagnosis annually. At Penn a comprehensive cognitive battery is administered either annually or biennially, and a cognitive diagnosis is made by expert consensus. Main Outcomes: Kaplan-Meier (KM) survival curves were fit for time from PD diagnosis to stable dementia diagnosis for each cohort, using assigned cognitive diagnosis of dementia as the primary endpoint (for both PPMI and Penn), and MoCA score <21 and MDS-UPDRS Part I cognition score ≥3 as secondary endpoints (for PPMI). In addition, cumulative dementia prevalence by PD disease duration was tabulated for each study and endpoint. Results: For the PPMI cohort, 417 PD participants were seen at baseline; estimated cumulative probability of dementia at year 10 disease duration were: 7% (site investigator diagnosis), 9% (MoCA) or 7.4% (MDS-UPDRS Part I cognition). For the Penn cohort, 389 PD participants were followed over time, with 184 participants (47% of cohort) eventually diagnosed with dementia. The KM curve for the Penn cohort had median time to dementia diagnosis =15 years (95% CI: 13-15) disease duration; the estimated cumulative probability of dementia was 27% at year 10, 50% at year 15, and 74% at year 20. Conclusions and Relevance: Results from two large, prospective studies suggest that dementia in Parkinson disease occurs less frequently, or later in the disease course, than often-cited previous research studies have reported

    The combined effect of amyloid-β and tau biomarkers on brain atrophy in dementia with Lewy bodies

    Get PDF
    Background Alzheimer’s disease (AD)-related pathology is frequently found in patients with dementia with Lewy bodies (DLB). However, it is unknown how amyloid-β and tau-related pathologies influence neurodegeneration in DLB. Understanding the mechanisms underlying brain atrophy in DLB can improve our knowledge about disease progression, differential diagnosis, drug development and testing of anti-amyloid and anti-tau therapies in DLB. Objectives We aimed at investigating the combined effect of CSF amyloid-β42, phosphorylated tau and total tau on regional brain atrophy in DLB in the European DLB (E-DLB) cohort. Methods 86 probable DLB patients from the E-DLB cohort with CSF and MRI data were included. Random forest was used to analyze the association of CSF biomarkers (predictors) with visual rating scales for medial temporal lobe atrophy (MTA), posterior atrophy (PA) and global cortical atrophy scale-frontal subscale (GCA-F) (outcomes), including age, sex, education and disease duration as extra predictors. Results DLB patients with abnormal MTA scores had abnormal CSF Aβ42, shorter disease duration and older age. DLB patients with abnormal PA scores had abnormal levels of CSF Aβ42 and p-tau, older age, lower education and shorter disease duration. Abnormal GCA-F scores were associated with lower education, male sex, and older age, but not with any AD-related CSF biomarker. Conclusions This study shows preliminary data on the potential combined effect of amyloid-β and tau-related pathologies on the integrity of posterior brain cortices in DLB patients, whereas only amyloid-β seems to be related to MTA. Future availability of α-synuclein biomarkers will help us to understand the effect of α-synuclein and AD-related pathologies on brain integrity in DLB.publishedVersio

    In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson’s disease

    Get PDF
    Cognitive impairments are a prevalent and disabling non-motor complication of Parkinson’s disease, but with variable expression and progression. The onset of serious cognitive decline occurs alongside substantial cholinergic denervation, but imprecision of previously available techniques for in vivo measurement of cholinergic degeneration limit their use as predictive cognitive biomarkers. However, recent developments in stereotactic mapping of the cholinergic basal forebrain have been found useful for predicting cognitive decline in prodromal stages of Alzheimer’s disease. These methods have not yet been applied to longitudinal Parkinson’s disease data. In a large sample of people with de novo Parkinson’s disease (n = 168), retrieved from the Parkinson’s Progressive Markers Initiative database, we measured cholinergic basal forebrain volumes, using morphometric analysis of T1-weighted images in combination with a detailed stereotactic atlas of the cholinergic basal forebrain nuclei. Using a binary classification procedure, we defined patients with reduced basal forebrain volumes (relative to age) at baseline, based on volumes measured in a normative sample (n = 76). Additionally, relationships between the basal forebrain volumes at baseline, risk of later cognitive decline, and scores on up to 5 years of annual cognitive assessments were assessed with regression, survival analysis and linear mixed modelling. In patients, smaller volumes in a region corresponding to the nucleus basalis of Meynert were associated with greater change in global cognitive, but not motor scores after 2 years. Using the binary classification procedure, patients classified as having smaller than expected volumes of the nucleus basalis of Meynert had ∼3.5-fold greater risk of being categorized as mildly cognitively impaired over a period of up to 5 years of follow-up (hazard ratio = 3.51). Finally, linear mixed modelling analysis of domain-specific cognitive scores revealed that patients classified as having smaller than expected nucleus basalis volumes showed more severe and rapid decline over up to 5 years on tests of memory and semantic fluency, but not on tests of executive function. Thus, we provide the first evidence that volumetric measurement of the nucleus basalis of Meynert can predict early cognitive decline. Our methods therefore provide the opportunity for multiple-modality biomarker models to include a cholinergic biomarker, which is currently lacking for the prediction of cognitive deterioration in Parkinson’s disease. Additionally, finding dissociated relationships between nucleus basalis status and domain-specific cognitive decline has implications for understanding the neural basis of heterogeneity of Parkinson’s disease-related cognitive decline

    Gray Matter Changes in Parkinson's and Alzheimer's Disease and Relation to Cognition

    Get PDF
    Purpose of Review We summarize structural (s)MRI findings of gray matter (GM) atrophy related to cognitive impairment in Alzheimer's disease (AD) and Parkinson's disease (PD) in light of new analytical approaches and recent longitudinal studies results. Recent Findings The hippocampus-to-cortex ratio seems to be the best sMRI biomarker to discriminate between various AD subtypes, following the spatial distribution of tau pathology, and predict rate of cognitive decline. PD is clinically far more variable than AD, with heterogeneous underlying brain pathology. Novel multivariate approaches have been used to describe patterns of early subcortical and cortical changes that relate to more malignant courses of PD. New emerging analytical approaches that combine structural MRI data with clinical and other biomarker outcomes hold promise for detecting specific GM changes in the early stages of PD and preclinical AD that may predict mild cognitive impairment and dementia conversion

    The Parkinson's progression markers initiative (PPMI) - establishing a PD biomarker cohort

    Get PDF
    Objective The Parkinson's Progression Markers Initiative (PPMI) is an observational, international study designed to establish biomarker-defined cohorts and identify clinical, imaging, genetic, and biospecimen Parkinson's disease (PD) progression markers to accelerate disease-modifying therapeutic trials. Methods A total of 423 untreated PD, 196 Healthy Control (HC) and 64 SWEDD (scans without evidence of dopaminergic deficit) subjects were enrolled at 24 sites. To enroll PD subjects as early as possible following diagnosis, subjects were eligible with only asymmetric bradykinesia or tremor plus a dopamine transporter (DAT) binding deficit on SPECT imaging. Acquisition of data was standardized as detailed at www.ppmi-info.org. Results Approximately 9% of enrolled subjects had a single PD sign at baseline. DAT imaging excluded 16% of potential PD subjects with SWEDD. The total MDS-UPDRS for PD was 32.4 compared to 4.6 for HC and 28.2 for SWEDD. On average, PD subjects demonstrated 45% and 68% reduction in mean striatal and contralateral putamen Specific Binding Ratios (SBR), respectively. Cerebrospinal fluid (CSF) was acquired from >97% of all subjects. CSF (PD/HC/SWEDD pg/mL) α-synuclein (1845/2204/2141) was reduced in PD vs HC or SWEDD (P < 0.03). Similarly, t-tau (45/53) and p-tau (16/18) were reduced in PD versus HC (P < 0.01), Interpretation PPMI has detailed the biomarker signature for an early PD cohort defined by clinical features and imaging biomarkers. This strategy provides the framework to establish biomarker cohorts and to define longitudinal progression biomarkers to support future PD treatment trials

    Longitudinal clinical and biomarker characteristics of non-manifesting LRRK2 G2019S carriers in the PPMI cohort

    Get PDF
    We examined 2-year longitudinal change in clinical features and biomarkers in LRRK2 non-manifesting carriers (NMCs) versus healthy controls (HCs) enrolled in the Parkinson’s Progression Markers Initiative (PPMI). We analyzed 2-year longitudinal data from 176 LRRK2 G2019S NMCs and 185 HCs. All participants were assessed annually with comprehensive motor and non-motor scales, dopamine transporter (DAT) imaging, and biofluid biomarkers. The latter included cerebrospinal fluid (CSF) Abeta, total tau and phospho-tau; serum urate and neurofilament light chain (NfL); and urine bis(monoacylglycerol) phosphate (BMP). At baseline, LRRK2 G2019S NMCs had a mean (SD) age of 62 (7.7) years and were 56% female. 13% had DAT deficit (defined as <65% of age/sex-expected lowest putamen SBR) and 11% had hyposmia (defined as ≤15th percentile for age and sex). Only 5 of 176 LRRK2 NMCs developed PD during follow-up. Although NMCs scored significantly worse on numerous clinical scales at baseline than HCs, there was no longitudinal change in any clinical measures over 2 years or in DAT binding. There were no longitudinal differences in CSF and serum biomarkers between NMCs and HCs. Urinary BMP was significantly elevated in NMCs at all time points but did not change longitudinally. Neither baseline biofluid biomarkers nor the presence of DAT deficit correlated with 2-year change in clinical outcomes. We observed no significant 2-year longitudinal change in clinical or biomarker measures in LRRK2 G2019S NMCs in this large, well-characterized cohort even in the participants with baseline DAT deficit. These findings highlight the essential need for further enrichment biomarker discovery in addition to DAT deficit and longer follow-up to enable the selection of NMCs at the highest risk for conversion to enable future prevention clinical trials
    • …
    corecore