22 research outputs found

    Tracing the magnetic field of IRDC G028.23-00.19 using NIR polarimetry

    Full text link
    The importance of the magnetic (B) field in the formation of infrared dark clouds (IRDCs) and massive stars is an ongoing topic of investigation. We studied the plane-of-sky B field for one IRDC, G028.23-00.19, to understand the interaction between the field and the cloud. We used near-IR background starlight polarimetry to probe the B field and performed several observational tests to assess the field importance. The polarimetric data, taken with the Mimir instrument, consisted of H-band and K-band observations, totaling 17,160 stellar measurements. We traced the plane-of-sky B-field morphology with respect to the sky-projected cloud elongation. We also found the relationship between the estimated B-field strength and gas volume density, and we computed estimates of the normalized mass-to-magnetic flux ratio. The B-field orientation with respect to the cloud did not show a preferred alignment, but it did exhibit a large-scale pattern. The plane-of-sky B-field strengths ranged from 10 to 165 μG, and the B-field strength dependence on density followed a power law with an index consistent with 2/3. The mass-to-magnetic flux ratio also increased as a function of density. The relative orientations and relationship between the B field and density imply that the B field was not dynamically important in the formation of the IRDC. The increase in mass-to-flux ratio as a function of density, though, indicates a dynamically important B field. Therefore, it is unclear whether the B field influenced the formation of G28.23. However, it is likely that the presence of the IRDC changed the local B-field morphology.We thank J. Montgomery, T. Hogge, and I. Stephens for constructive discussions on the analysis. We are grateful to R. Crutcher for permission to include his Zeeman data. This research was conducted in part using the Mimir instrument, jointly developed at Boston University and Lowell Observatory and supported by NASA, NSF, and the W.M. Keck Foundation. This research made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology (Caltech), under contract with NASA. This publication made use of data products from the Two Micron All Sky Survey, which was a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/Caltech, funded by NASA and NSF. This work is based in part on data obtained as part of the UKIRT Infrared Deep Sky Survey. The ATLAS-GAL project is a collaboration between the Max-PlanckGesellschaft, the European Southern Observatory (ESO), and the Universidad de Chile. It includes projects E-181.C-0885, E-078.F-9040(A), M-079.C-9501(A), M-081.C-9501(A), and Chilean data. This publication makes use of molecular line data from the Boston University-FCRAO Galactic Ring Survey (GRS). The GRS is a joint project of Boston University and Five College Radio Astronomy Observatory, funded by the National Science Foundation under grants AST-9800334, 0098562, 0100793, 0228993, and. 0507657. A.E.G. acknowledges support from FONDECYT 3150570. This work was supported under NSF grants AST 09-07790 and 14-12269 and NASA grant NNX15AE51G to Boston University. We thank the anonymous referee for valuable feedback, which improved the quality of this work. (NASA; NSF; W.M. Keck Foundation; E-181.C-0885 - Max-Planck-Gesellschaft; E-078.F-9040(A) - Max-Planck-Gesellschaft; M-079.C-9501(A) - Max-Planck-Gesellschaft; M-081.C-9501(A) - Max-Planck-Gesellschaft; E-181.C-0885 - European Southern Observatory (ESO); E-078.F-9040(A) - European Southern Observatory (ESO); M-079.C-9501(A) - European Southern Observatory (ESO); M-081.C-9501(A) - European Southern Observatory (ESO); E-181.C-0885 - Universidad de Chile; E-078.F-9040(A) - Universidad de Chile; M-079.C-9501(A) - Universidad de Chile; M-081.C-9501(A) - Universidad de Chile; AST-9800334 - National Science Foundation; 0098562 - National Science Foundation; 0100793 - National Science Foundation; 0228993 - National Science Foundation; 0507657 - National Science Foundation; 3150570 - FONDECYT; AST 09-07790 - NSF; 14-12269 - NSF; NNX15AE51G - NASA

    Galactic pane infrared polarization survey (GPIPS): Data Release 4

    Full text link
    The Galactic Plane Infrared Polarization Survey (GPIPS) seeks to characterize the magnetic field in the dusty Galactic disk using near-infrared stellar polarimetry. All GPIPS observations were completed using the 1.83 m Perkins telescope and Mimir instrument. GPIPS observations surveyed 76 deg2 of the northern Galactic plane, from Galactic longitudes 18°–56° and latitudes −1° to +1°, in the H band (1.6 μm). Surveyed stars span 7th–16th mag, resulting in nearly 10 million stars with measured linear polarizations. Of these stars, ones with m_H < 12.5 mag and polarization percentage uncertainties under 2% were judged to be high quality and number over one million. GPIPS data reveal plane-of-sky magnetic field orientations for numerous interstellar clouds for AV values to ∼30 mag. The average sky separation of stars with m_H < 12.5 mag is about 30″, or about 60 per Planck polarization resolution element. Matching to Gaia DR2 showed the brightest GPIPS stars are red giants with distances in the 0.6–7.5 kpc range. Polarization orientations are mostly parallel to the Galactic disk, with some zones showing significant orientation departures. Changes in orientations are stronger as a function of Galactic longitude than of latitude. Considered at 10′ angular scales, directions that show the greatest polarization fractions and narrowest polarization position angle distributions are confined to about 10 large, coherent structures that are not correlated with star-forming clouds. The GPIPS polarimetric and photometric data products (Data Release 4 catalogs and images) are publicly available for over 13 million stars.Accepted manuscrip

    Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc)-null mice: evidence for a critical role of the central nervous system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cellular prion protein (PrPc) is a host-encoded glycoprotein whose transconformation into PrP scrapie (PrPSc) initiates prion diseases. The role of PrPc in health is still obscure, but many candidate functions have been attributed to the protein, both in the immune and the nervous systems. Recent data show that experimental autoimmune encephalomyelitis (EAE) is worsened in mice lacking PrPc. Disease exacerbation has been attributed to T cells that would differentiate into more aggressive effectors when deprived of PrPc. However, alternative interpretations such as reduced resistance of neurons to autoimmune insult and exacerbated gliosis leading to neuronal deficits were not considered.</p> <p>Method</p> <p>To better discriminate the contribution of immune cells versus neural cells, reciprocal bone marrow chimeras with differential expression of PrPc in the lymphoid or in the central nervous system (CNS) were generated. Mice were subsequently challenged with MOG<sub>35-55 </sub>peptide and clinical disease as well as histopathology were compared in both groups. Furthermore, to test directly the T cell hypothesis, we compared the encephalitogenicity of adoptively transferred PrPc-deficient versus PrPc-sufficient, anti-MOG T cells.</p> <p>Results</p> <p>First, EAE exacerbation in PrPc-deficient mice was confirmed. Irradiation exacerbated EAE in all the chimeras and controls, but disease was more severe in mice with a PrPc-deleted CNS and a normal immune system than in the reciprocal construction. Moreover, there was no indication that anti-MOG responses were different in PrPc-sufficient and PrPc-deficient mice. Paradoxically, PrPc-deficient anti-MOG 2D2 T cells were less pathogenic than PrPc-expressing 2D2 T cells.</p> <p>Conclusions</p> <p>In view of the present data, it can be concluded that the origin of EAE exacerbation in PrPc-ablated mice resides in the absence of the prion protein in the CNS. Furthermore, the absence of PrPc on both neural and immune cells does not synergize for disease worsening. These conclusions highlight the critical role of PrPc in maintaining the integrity of the CNS in situations of stress, especially during a neuroinflammatory insult.</p

    The cellular Prion Protein: a player in immunological quiescence

    Get PDF
    Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrPC) remains elusive. Here, we present a novel concept suggesting that PrPC contributes to immunological quiescence in addition to cell protection. PrPC is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrPC serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here we review studies of PrPC physiology in view of this concept

    Effect of Nutrient Removal and Resource Recovery on Life Cycle Cost and Environmental Impacts of a Small Scale Water Resource Recovery Facility

    No full text
    To limit effluent impacts on eutrophication in receiving waterbodies, a small community water resource recovery facility (WRRF) upgraded its conventional activated sludge treatment process for biological nutrient removal, and considered enhanced primary settling and anaerobic digestion (AD) with co-digestion of high strength organic waste (HSOW). The community initiated the resource recovery hub concept with the intention of converting an energy-consuming wastewater treatment plant into a facility that generates energy and nutrients and reuses water. We applied life cycle assessment and life cycle cost assessment to evaluate the net impact of the potential conversion. The upgraded WRRF reduced eutrophication impacts by 40% compared to the legacy system. Other environmental impacts such as global climate change potential (GCCP) and cumulative energy demand (CED) were strongly affected by AD and composting assumptions. The scenario analysis showed that HSOW co-digestion with energy recovery can lead to reductions in GCCP and CED of 7% and 108%, respectively, for the upgraded WRRF (high feedstock-base AD performance scenarios) relative to the legacy system. The cost analysis showed that using the full digester capacity and achieving high digester performance can reduce the life cycle cost of WRRF upgrades by 15% over a 30-year period

    Assessment of protein inclusions in cultured cells using automated image analysis

    No full text
    Proteinaceous inclusions are associated with neurodegenerative diseases and cell models are often used to determine genetic and chemical modifiers of their formation. This protocol involves the usage of automated microscopy and machine learning-based image analysis to accurately quantify the levels of protein inclusion formation in cultured cells from fluorescence microscopy images. This protocol is highly scalable and can be applied to a few images or large datasets. For complete details on the use and execution of this protocol, please refer to McAlary et al. (2022)

    Tracing the Magnetic Field of IRDC G028.23-00.19 Using NIR Polarimetry

    No full text
    The importance of the magnetic (B) field in the formation of infrared dark clouds (IRDCs) and massive stars is an ongoing topic of investigation. We studied the plane-of-sky B field for one IRDC, G028.23-00.19, to understand the interaction between the field and the cloud. We used near-IR background starlight polarimetry to probe the B field and performed several observational tests to assess the field importance. The polarimetric data, taken with the Mimir instrument, consisted of H-band and K-band observations, totaling 17,160 stellar measurements. We traced the plane-of-sky B-field morphology with respect to the sky-projected cloud elongation. We also found the relationship between the estimated B-field strength and gas volume density, and we computed estimates of the normalized mass-to-magnetic flux ratio. The B-field orientation with respect to the cloud did not show a preferred alignment, but it did exhibit a large-scale pattern. The plane-of-sky B-field strengths ranged from 10 to 165 {\mu}G, and the B-field strength dependence on density followed a power law with an index consistent with 2/3. The mass-to-magnetic flux ratio also increased as a function of density. The relative orientations and relationship between the B field and density imply that the B field was not dynamically important in the formation of the IRDC. The increase in mass-to-flux ratio as a function of density, though, indicates a dynamically important B field. Therefore, it is unclear whether the B field influenced the formation of G28.23. However, it is likely that the presence of the IRDC changed the local B-field morphology.Comment: 34 pages, 19 figures, publishe

    Cells and prions: A license to replicate

    Get PDF
    Prion diseases are neurodegenerative, infectious disorders characterized by the aggregation of a misfolded isoform of the cellular prion protein (PrP(C)). The infectious agent - termed prion - is mainly composed of misfolded PrP(Sc). In addition to the central nervous system prions can colonize secondary lymphoid organs and inflammatory foci. Follicular dendritic cells are important extraneural sites of prion replication. However, recent data point to a broader range of cell types that can replicate prions. Here, we review the state of the art in regards to peripheral prion replication, neuroinvasion and the determinants of prion replication competence
    corecore