68 research outputs found

    Il-15 enhances the persistence and function of bcma-targeting car-t cells compared to il-2 or il-15/il-7 by limiting car-t cell dysfunction and differentiation

    Get PDF
    Chimeric antigen receptor (CAR)-T cell immunotherapy has revolutionized the treatment of B-lymphoid malignancies. For multiple myeloma (MM), B-cell maturation antigen (BCMA)-targeted CAR-T cells have achieved outstanding complete response rates, but unfortunately, patients often relapse within a year of receiving the therapy. Increased persistence and reduced dysfunction are crucial features that enhance the durability of CAR-T cell responses. One of the factors that influence CAR-T cell in vivo longevity and loss of function, but which has not yet been extensively studied for BCMA-directed CAR-T cells, are the cytokines used during their production. We here compared the impact of IL-2, IL-15 and a combination of IL-15/IL-7 on the phenotype and function of ARI2h, an academic BCMA-directed CAR-T cell that is currently being administered to MM patients. For this study, flow cytometry, in vitro cytotoxicity assays and analysis of cytokine release were performed. In addition, ARI2h cells expanded with IL-2, IL-15, or IL-15/IL-7 were injected into MM tumor-bearing mice to assess their in vivo efficacy. We demonstrated that each of the cytokine conditions was suitable for the expansion of ARI2h cells, with clear in vitro activity. Strikingly, however, IL-15-produced ARI2h cells had improved in vivo efficacy and persistence. When explored further, it was found that IL-15 drove a less-differentiated ARI2h phenotype, ameliorated parameters related to CAR-T cell dysfunction, and lowered the release of cytokines potentially involved in cytokine release syndrome and MM progression. Moreover, we observed that IL-15 was less potent in inducing T cell senescence and DNA damage accumulation, both of which may contribute to an unfavorable CAR-T cell phenotype. These findings show the superiority of IL-15 to IL-2 and IL-15/IL-7 in the quality of anti-BCMA CAR-T cells, particularly their efficacy and persistence, and as such, could improve the duration of responses if applied to the clinical production of CAR-T cells for patients

    Epigenetic Modulation of Gremlin-1/NOTCH Pathway in Experimental Crescentic Immune-Mediated Glomerulonephritis

    Get PDF
    Crescentic glomerulonephritis is a devastating autoimmune disease that without early and properly treatment may rapidly progress to end-stage renal disease and death. Current immunosuppressive treatment provides limited efficacy and an important burden of adverse events. Epigenetic drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain (BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, including histones and transcription factors. iBETs have demonstrated protective effects on malignancy, inflammatory disorders and experimental kidney disease. Recently, Gremlin-1 was proposed as a urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. We have now evaluated whether iBETs could regulate Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS) in mice, a model resembling human crescentic glomerulonephritis. In NTS-injected mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage, restoring podocyte numbers. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation. Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect of iBETs was also mediated by modulation of NOTCH pathway. JQ1 inhibited the gene expression of the NOTCH effectors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis

    Autoantibodies against MHC class I polypeptide-related sequence A are associated with increased risk of concomitant autoimmune diseases in celiac patients

    Get PDF
    Background: Overexpression of autologous proteins can lead to the formation of autoantibodies and autoimmune diseases. MHC class I polypeptide-related sequence A (MICA) is highly expressed in the enterocytes of patients with celiac disease, which arises in response to gluten. The aim of this study was to investigate anti-MICA antibody formation in patients with celiac disease and its association with other autoimmune processes. Methods: We tested serum samples from 383 patients with celiac disease, obtained before they took up a gluten-free diet, 428 patients with diverse autoimmune diseases, and 200 controls for anti-MICA antibodies. All samples were also tested for anti-endomysium and anti-transglutaminase antibodies. Results: Antibodies against MICA were detected in samples from 41.7% of patients with celiac disease but in only 3.5% of those from controls (P <0.0001) and 8.2% from patients with autoimmune disease (P <0.0001). These antibodies disappeared after the instauration of a gluten-free diet. Anti-MICA antibodies were significantly prevalent in younger patients (P <0.01). Fifty-eight patients with celiac disease (15.1%) presented a concomitant autoimmune disease. Anti-MICA-positive patients had a higher risk of autoimmune disease than MICA antibody-negative patients (P <0.0001; odds ratio = 6.11). The risk was even higher when we also controlled for age (odds ratio = 11.69). Finally, we found that the associated risk of developing additional autoimmune diseases was 16 and 10 times as high in pediatric patients and adults with anti-MICA, respectively, as in those without. Conclusions: The development of anti-MICA antibodies could be related to a gluten-containing diet, and seems to be involved in the development of autoimmune diseases in patients with celiac disease, especially younger ones

    Effect of killer immunoglobulin-like receptors in the response to combined treatment in patients with chronic hepatitis C virus infection

    Get PDF
    Killer immunoglobulin-like receptors (KIRs) are related to the activation and inhibition of NK cells and may play an important role in the innate response against infection with viruses such as hepatitis C virus (HCV). We examined whether the different combinations of KIRs with their HLA class I ligands influenced the response to combined treatment (pegylated alpha interferon and ribavirin) of patients infected by HCV. A total of 186 consecutive patients diagnosed with chronic HCV infection were analyzed. Seventy-seven patients exhibited HCV RNA levels at 6 months posttreatment and were called nonresponders (NR), while 109 cleared viral RNA and were named sustained viral responders (SVR). Patients were typed for HLA-B, HLA-Cw, KIR genes, and HCV genotype. In our study, the frequency of the KIR2DL2 allele was significantly increased in NR (P < 0.001; odds ratio [OR] = 1.95), as was the frequency of the KIR2DL2/KIR2DL2 genotype (P < 0.005; OR = 2.52). In contrast, the frequencies of the KIR2DL3 genotype (P < 0.001) and KIR2DL3/KIR2DL3 genotype (P < 0.05; OR = 0.54) were significantly increased in the SVR. Different combinations of KIR2DL2 and KIR2DL3 alleles with their ligands were analyzed. The frequency of the KIR2DL2/KIR2DL2-HLA-C1C2 genotype was significantly increased in the NR (P < 0.01; OR = 3.15). Additionally, we found a higher frequency of the KIR2DL3/KIR2DL3-HLA-C1C1 genotype in the SVR group (P < 0.05; OR = 0.33). These results were not affected by the HCV genotype. In conclusion, patients who carried the KIR2DL2/KIR2DL2-HLA-C1C2 genotype were less prone to respond to treatment. However, the KIR2DL3/KIR2DL3-HLA-C1C1 genotype clearly correlated with a satisfactory response to treatment, defined by the clearance of HCV RNA

    Multiple myeloma and SARS-CoV-2 infection: clinical characteristics and prognostic factors of inpatient mortality

    Get PDF
    There is limited information on the characteristics, prognostic factors, and outcomes of patients with multiplemyeloma (MM) hospitalized with COVID-19. This retrospective case series investigated 167 patients reported from 73hospitals within the Spanish Myeloma Collaborative Group network in March and April, 2020. Outcomes werecompared with 167 randomly selected, contemporary, age-/sex-matched noncancer patients with COVID-19 admittedat six participating hospitals. Among MM and noncancer patients, median age was 71 years, and 57% of patients weremale; 75 and 77% of patients, respectively, had at least one comorbidity. COVID-19 clinical severity wasmoderate-severe in 77 and 89% of patients and critical in 8 and 4%, respectively. Supplemental oxygen was requiredby 47 and 55% of MM and noncancer patients, respectively, and 21%/9% vs 8%/6% required noninvasive/invasiveventilation. Inpatient mortality was 34 and 23% in MM and noncancer patients, respectively. Among MM patients,inpatient mortality was 41% in males, 42% in patients aged >65 years, 49% in patients with active/progressive MM athospitalization, and 59% in patients with comorbid renal disease at hospitalization, which were independentprognostic factors on adjusted multivariate analysis. This case series demonstrates the increased risk and identifiespredictors of inpatient mortality among MM patients hospitalized with COVID-19

    A promoter DNA demethylation landscape of human hematopoietic differentiation

    Get PDF
    Global mechanisms defining the gene expression programs specific for hematopoiesis are still not fully understood. Here, we show that promoter DNA demethylation is associated with the activation of hematopoietic-specific genes. Using genome-wide promoter methylation arrays, we identified 694 hematopoietic-specific genes repressed by promoter DNA methylation in human embryonic stem cells and whose loss of methylation in hematopoietic can be associated with gene expression. The association between promoter methylation and gene expression was studied for many hematopoietic-specific genes including CD45, CD34, CD28, CD19, the T cell receptor (TCR), the MHC class II gene HLA-DR, perforin 1 and the phosphoinositide 3-kinase (PI3K) and results indicated that DNA demethylation was not always sufficient for gene activation. Promoter demethylation occurred either early during embryonic development or later on during hematopoietic differentiation. Analysis of the genome-wide promoter methylation status of induced pluripotent stem cells (iPSCs) generated from somatic CD34+ HSPCs and differentiated derivatives from CD34+ HSPCs confirmed the role of DNA methylation in regulating the expression of genes of the hemato-immune system, and indicated that promoter methylation of these genes may be associated to stemness. Together, these data suggest that promoter DNA demethylation might play a role in the tissue/cell-specific genome-wide gene regulation within the hematopoietic compartment

    Cancer Genes Hypermethylated in Human Embryonic Stem Cells

    Get PDF
    Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation

    Chromatin regulation by Histone H4 acetylation at Lysine 16 during cell death and differentiation in the myeloid compartment

    Get PDF
    Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death

    Multiple myeloma and SARS-CoV-2 infection: clinical characteristics and prognostic factors of inpatient mortality

    Get PDF
    There is limited information on the characteristics, prognostic factors, and outcomes of patients with multiple myeloma (MM) hospitalized with COVID-19. This retrospective case series investigated 167 patients reported from 73 hospitals within the Spanish Myeloma Collaborative Group network in March and April, 2020. Outcomes were compared with 167 randomly selected, contemporary, age-/sex-matched noncancer patients with COVID-19 admitted at six participating hospitals. Among MM and noncancer patients, median age was 71 years, and 57% of patients were male; 75 and 77% of patients, respectively, had at least one comorbidity. COVID-19 clinical severity was moderate–severe in 77 and 89% of patients and critical in 8 and 4%, respectively. Supplemental oxygen was required by 47 and 55% of MM and noncancer patients, respectively, and 21%/9% vs 8%/6% required noninvasive/invasive ventilation. Inpatient mortality was 34 and 23% in MM and noncancer patients, respectively. Among MM patients, inpatient mortality was 41% in males, 42% in patients aged >65 years, 49% in patients with active/progressive MM at hospitalization, and 59% in patients with comorbid renal disease at hospitalization, which were independent prognostic factors on adjusted multivariate analysis. This case series demonstrates the increased risk and identifies predictors of inpatient mortality among MM patients hospitalized with COVID-19
    corecore